56,195 research outputs found
Geometry of Deformed Boson Algebras
Phase-space realisations of an infinite parameter family of quantum
deformations of the boson algebra in which the -- and the --deformed
algebras arise as special cases are studied. Quantum and classical models for
the corresponding deformed oscillators are provided. The deformation parameters
are identified with coefficients of non-linear terms in the normal forms
expansion of a family of classical Hamiltonian systems. These quantum
deformations are trivial in the sense that they correspond to non-unitary
transformations of the Weyl algebra. They are non-trivial in the sense that the
deformed commutators consistently quantise a class of non-canonical classical
Poisson structures.Comment: 20 pages, late
Atmospheres and Spectra of Strongly Magnetized Neutron Stars II: Effect of Vacuum Polarization
We study the effect of vacuum polarization on the atmosphere structure and
radiation spectra of neutron stars with surface magnetic fields B=10^14-10^15
G, as appropriate for magnetars. Vacuum polarization modifies the dielectric
property of the medium and gives rise to a resonance feature in the opacity;
this feature is narrow and occurs at a photon energy that depends on the plasma
density. Vacuum polarization can also induce resonant conversion of photon
modes via a mechanism analogous to the MSW mechanism for neutrino oscillation.
We construct atmosphere models in radiative equilibrium with an effective
temperature of a few \times 10^6 K by solving the full radiative transfer
equations for both polarization modes in a fully ionized hydrogen plasma. We
discuss the subtleties in treating the vacuum polarization effects in the
atmosphere models and present approximate solutions to the radiative transfer
problem which bracket the true answer. We show from both analytic
considerations and numerical calculations that vacuum polarization produces a
broad depression in the X-ray flux at high energies (a few keV \la E \la a few
tens of keV) as compared to models without vacuum polarization; this arises
from the density dependence of the vacuum resonance feature and the large
density gradient present in the atmosphere. Thus the vacuum polarization effect
softens the high energy tail of the thermal spectrum, although the atmospheric
emission is still harder than the blackbody spectrum because of the non-grey
opacities. We also show that the depression of continuum flux strongly
suppresses the equivalent width of the ion cyclotron line and therefore makes
the line more difficult to observe.Comment: 21 pages, 21 figures; MNRAS; corrected minor typo
Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater
Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 °C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni
Atmospheres and Spectra of Strongly Magnetized Neutron Stars
We construct atmosphere models for strongly magnetized neutron stars with
surface fields G and effective temperatures K. The atmospheres directly determine the characteristics
of thermal emission from isolated neutron stars, including radio pulsars, soft
gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere
is composed of pure hydrogen or helium and is assumed to be fully ionized. The
radiative opacities include free-free absorption and scattering by both
electrons and ions computed for the two photon polarization modes in the
magnetized electron-ion plasma. Since the radiation emerges from deep layers in
the atmosphere with \rho\ga 10^2 g/cm, plasma effects can significantly
modify the photon opacities by changing the properties of the polarization
modes. In the case where the magnetic field and the surface normal are
parallel, we solve the full, angle-dependent, coupled radiative transfer
equations for both polarization modes. We also construct atmosphere models for
general field orientations based on the diffusion approximation of the
transport equations and compare the results with models based on full radiative
transport. In general, the emergent thermal radiation exhibits significant
deviation from blackbody, with harder spectra at high energies. The spectra
also show a broad feature (\Delta E/\Ebi\sim 1) around the ion cyclotron
resonance \Ebi=0.63 (Z/A)(B/10^{14}{G}) keV, where and are the atomic
charge and atomic mass of the ion, respectively; this feature is particularly
pronounced when \Ebi\ga 3k\Teff. Detection of the resonance feature would
provide a direct measurement of the surface magnetic fields on magnetars.Comment: 29 pages, 11 figures; corrected factor of 2 in He models: minor
changes to figs 4 and 9 as a result; other very minor change
The creeping motion of liquid drops through a circular tube of comparable diameter
The creeping motion through a circular tube of neutrally buoyant Newtonian drops which have an undeformed radius comparable to that of the tube was studied experimentally. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop owing to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow are reported for various viscosity ratios, total flow rates and drop sizes
- …