45 research outputs found

    Invariant Whitney Functions

    Full text link
    A theorem of Gerald Schwarz [24, Thm. 1] says that for a linear action of a compact Lie group GG on a finite dimensional real vector space VV any smooth GG-invariant function on VV can be written as a composite with the Hilbert map. We prove a similar statement for the case of Whitney functions along a subanalytic set ZVZ\subset V fulfilling some regularity assumptions. In order to deal with the case when ZZ is not GG-stable we use the language of groupoids

    The Koszul complex of a moment map

    Full text link
    Let KU(V)K\to U(V) be a unitary representation of the compact Lie group KK. Then there is a canonical moment mapping ρ ⁣:Vk\rho\colon V\to\mathfrak k^*. We have the Koszul complex K(ρ,C(V)){\mathcal K}(\rho,\mathcal C^\infty(V)) of the component functions ρ1,...,ρk\rho_1,...,\rho_k of ρ\rho. Let G=KCG=K_{\mathbb C}, the complexification of KK. We show that the Koszul complex is a resolution of the smooth functions on ρ1(0)\rho^{-1}(0) if and only if G\to\GL(V) is 1-large, a concept introduced in earlier work of the second author. Now let MM be a symplectic manifold with a Hamiltonian action of KK. Let ρ\rho be a moment mapping and consider the Koszul complex given by the component functions of ρ\rho. We show that the Koszul complex is a resolution of the smooth functions on Z=ρ1(0)Z=\rho^{-1}(0) if and only if the complexification of each symplectic slice representation at a point of ZZ is 1-large.Comment: 8 pages, final version, to appear in Journal of Symplectic Geometr

    BRST Cohomology and Phase Space Reduction in Deformation Quantisation

    Full text link
    In this article we consider quantum phase space reduction when zero is a regular value of the momentum map. By analogy with the classical case we define the BRST cohomology in the framework of deformation quantization. We compute the quantum BRST cohomology in terms of a `quantum' Chevalley-Eilenberg cohomology of the Lie algebra on the constraint surface. To prove this result, we construct an explicit chain homotopy, both in the classical and quantum case, which is constructed out of a prolongation of functions on the constraint surface. We have observed the phenomenon that the quantum BRST cohomology cannot always be used for quantum reduction, because generally its zero part is no longer a deformation of the space of all smooth functions on the reduced phase space. But in case the group action is `sufficiently nice', e.g. proper (which is the case for all compact Lie group actions), it is shown for a strongly invariant star product that the BRST procedure always induces a star product on the reduced phase space in a rather explicit and natural way. Simple examples and counter examples are discussed.Comment: LaTeX2e, 34 pages, revised version: minor changes and corrected typo

    Variations on homological reduction

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der BFV-Reduktion von Hamiltonschen Systemen mit erstklassigen Zwangsbedingungen im Rahmen der klassischen Hamiltonschen Mechanik und im Rahmen der Deformationsquantisierung. Besondere Aufmerksamkeit wird dabei Zwangsbedingungen zuteil, die als Nullfaser singulärer äquivarianter Impulsabbildungen entstehen. Es ist schon länger bekannt, daß für Nullfasern regulärer äquivarianter Impulsabbildungen die in der theoretischen Physik gebräuchliche Methode der BFV-Reduktion zur Phasenraumreduktion nach Marsden/Weinstein äquivalent ist. In [24] konnte gezeigt werden, daß in dieser Situation die BFV-Reduktion sich auch im Rahmen der Deformationsquantisierung natürlich formulieren läßt und erfolgreich zur Konstruktion von Sternprodukten auf Marsden/Weinstein-Quotienten verwendet werden kann. Ein Hauptergebnis der vorliegenden Arbeit besteht in der Verallgemeinerung der Ergebnisse aus [24] auf den Fall singulärer Impulsabbildungen, deren Komponenten 1.) das Verschwindungsideal der Zwangsfläche erzeugen und 2.) einen vollständigen Durchschnitt bilden. Die Argumentation von [24] wird durch Gebrauch der Störungslemmata aus dem Anhang A.1 systematisiert und vereinfacht. Zum Existenzbeweis von stetigen Homotopien und stetiger Fortsetzungsabbildung für die Koszulauflösung werden der Zerfällungssatz und der Fortsetzungssatz von Bierstone und Schwarz [20] benutzt. Außerdem wird ein ’Jacobisches Kriterium’ für die Überprüfung von Bedingung 2.) angegeben. Basierend auf diesem Kriterium und Techniken aus [3] werden die Bedingungen 1.) und 2.) an einer Reihe von Beispielen getestet. Als Korollar erhält man den Beweis dafür, daß es symplektisch stratifizierte Räume gibt, die keine Orbifaltigkeiten sind und dennoch eine stetige Deformationsquantisierung zulassen. Ferner wird (ähnlich zu [92]) eine konzeptionielle Erklärung dafür gegeben, warum im Fall vollständiger Durchschnitte das Problem der Quantisierung der BRST-Ladung eine so einfache Lösung hat. Bildet die Impulsabbildung eine erstklassige Zwangsbedingung, ist aber kein vollständiger Durchschnitt, dann ist es im allgemeinen nicht bekannt, wie entsprechende Quantenreduktionsresultate zu erzielen sind. Ein Hauptaugenmerk der Untersuchung wird es deshalb sein, in dieser Situation die klassische BFV-Reduktion besser zu verstehen – natürlich in der Hoffnung, Grundlagen für eine etwaige (Deformations-)Quantisierung zu liefern. Wir werden feststellen, daß es zwei Gründe gibt, die Tate-Erzeuger (alias: Antigeister höheren Niveaus) notwendig machen: die Topologie der Zwangsfläche und die Singularitätentheorie der Impulsabbildung. Die Zahl der Tate-Erzeuger kann durch Übergang zu projektiven Tate-Erzeugern, also Vektorbündeln, verringert werden. Allerdings sorgt Halperins Starrheitssatz [57] dafür, daß im wesentlichen alle Fälle, für die die Zwangsfläche kein lokal vollständiger Durchschnitt ist, zu unendlich vielen Tate-Erzeugern führen. Erzeugen die Komponenten einer Impulsabbildung einer linearen symplektischen Gruppenwirkung das Verschwindungsideal der Zwangsfläche, so kann man eine lokal endliche Tate-Auflösung finden. Diese besitzt nach dem Fortsetzungssatz und dem Zerfällungssatz von Bierstone und Schwarz stetige, kontrahierende Homotopien. Ausgehend von einer solchen Tate-Auflösung konstruieren wir, die klassische BFV-Konstruktion für vollständige Durchschnitte verallgemeinernd, eine graduierte superkommutative Algebra. Wir können zeigen, daß diese graduierte Algebra auch im Vektorbündelfall eine graduierte Poissonklammer besitzt, die sogenannte Rothstein-Poissonklammer. Die Existenz einer solchen Poissonklammer war bereits von Rothstein [87] für die einfachere Situation einer symplektischen Supermannigfaltigkeit bewiesen worden. Darüberhinaus werden wir sehen, daß es auch im Vektorbündelfall eine BRST-Ladung gibt. Diese sieht im Fall von Impulsabbildungen etwas einfacher aus als für allgemeine erstklassige Zwangsbedingungen. Insgesamt wird also die klassische BFV-Konstruktion [95] auf den Fall projektiver Tate-Erzeuger verallgemeinert, und als eine Homotopieäquivalenz in der additiven Kategorie der Fréchet-Räume interpretiert
    corecore