605 research outputs found
NAIS: Neural Attentive Item Similarity Model for Recommendation
Item-to-item collaborative filtering (aka. item-based CF) has been long used
for building recommender systems in industrial settings, owing to its
interpretability and efficiency in real-time personalization. It builds a
user's profile as her historically interacted items, recommending new items
that are similar to the user's profile. As such, the key to an item-based CF
method is in the estimation of item similarities. Early approaches use
statistical measures such as cosine similarity and Pearson coefficient to
estimate item similarities, which are less accurate since they lack tailored
optimization for the recommendation task. In recent years, several works
attempt to learn item similarities from data, by expressing the similarity as
an underlying model and estimating model parameters by optimizing a
recommendation-aware objective function. While extensive efforts have been made
to use shallow linear models for learning item similarities, there has been
relatively less work exploring nonlinear neural network models for item-based
CF.
In this work, we propose a neural network model named Neural Attentive Item
Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an
attention network, which is capable of distinguishing which historical items in
a user profile are more important for a prediction. Compared to the
state-of-the-art item-based CF method Factored Item Similarity Model (FISM),
our NAIS has stronger representation power with only a few additional
parameters brought by the attention network. Extensive experiments on two
public benchmarks demonstrate the effectiveness of NAIS. This work is the first
attempt that designs neural network models for item-based CF, opening up new
research possibilities for future developments of neural recommender systems
KGAT: Knowledge Graph Attention Network for Recommendation
To provide more accurate, diverse, and explainable recommendation, it is
compulsory to go beyond modeling user-item interactions and take side
information into account. Traditional methods like factorization machine (FM)
cast it as a supervised learning problem, which assumes each interaction as an
independent instance with side information encoded. Due to the overlook of the
relations among instances or items (e.g., the director of a movie is also an
actor of another movie), these methods are insufficient to distill the
collaborative signal from the collective behaviors of users. In this work, we
investigate the utility of knowledge graph (KG), which breaks down the
independent interaction assumption by linking items with their attributes. We
argue that in such a hybrid structure of KG and user-item graph, high-order
relations --- which connect two items with one or multiple linked attributes
--- are an essential factor for successful recommendation. We propose a new
method named Knowledge Graph Attention Network (KGAT) which explicitly models
the high-order connectivities in KG in an end-to-end fashion. It recursively
propagates the embeddings from a node's neighbors (which can be users, items,
or attributes) to refine the node's embedding, and employs an attention
mechanism to discriminate the importance of the neighbors. Our KGAT is
conceptually advantageous to existing KG-based recommendation methods, which
either exploit high-order relations by extracting paths or implicitly modeling
them with regularization. Empirical results on three public benchmarks show
that KGAT significantly outperforms state-of-the-art methods like Neural FM and
RippleNet. Further studies verify the efficacy of embedding propagation for
high-order relation modeling and the interpretability benefits brought by the
attention mechanism.Comment: KDD 2019 research trac
Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search
Mobile landmark search (MLS) recently receives increasing attention for its
great practical values. However, it still remains unsolved due to two important
challenges. One is high bandwidth consumption of query transmission, and the
other is the huge visual variations of query images sent from mobile devices.
In this paper, we propose a novel hashing scheme, named as canonical view based
discrete multi-modal hashing (CV-DMH), to handle these problems via a novel
three-stage learning procedure. First, a submodular function is designed to
measure visual representativeness and redundancy of a view set. With it,
canonical views, which capture key visual appearances of landmark with limited
redundancy, are efficiently discovered with an iterative mining strategy.
Second, multi-modal sparse coding is applied to transform visual features from
multiple modalities into an intermediate representation. It can robustly and
adaptively characterize visual contents of varied landmark images with certain
canonical views. Finally, compact binary codes are learned on intermediate
representation within a tailored discrete binary embedding model which
preserves visual relations of images measured with canonical views and removes
the involved noises. In this part, we develop a new augmented Lagrangian
multiplier (ALM) based optimization method to directly solve the discrete
binary codes. We can not only explicitly deal with the discrete constraint, but
also consider the bit-uncorrelated constraint and balance constraint together.
Experiments on real world landmark datasets demonstrate the superior
performance of CV-DMH over several state-of-the-art methods
Discrete Factorization Machines for Fast Feature-based Recommendation
User and item features of side information are crucial for accurate
recommendation. However, the large number of feature dimensions, e.g., usually
larger than 10^7, results in expensive storage and computational cost. This
prohibits fast recommendation especially on mobile applications where the
computational resource is very limited. In this paper, we develop a generic
feature-based recommendation model, called Discrete Factorization Machine
(DFM), for fast and accurate recommendation. DFM binarizes the real-valued
model parameters (e.g., float32) of every feature embedding into binary codes
(e.g., boolean), and thus supports efficient storage and fast user-item score
computation. To avoid the severe quantization loss of the binarization, we
propose a convergent updating rule that resolves the challenging discrete
optimization of DFM. Through extensive experiments on two real-world datasets,
we show that 1) DFM consistently outperforms state-of-the-art binarized
recommendation models, and 2) DFM shows very competitive performance compared
to its real-valued version (FM), demonstrating the minimized quantization loss.
This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201
Enhancing Stock Movement Prediction with Adversarial Training
This paper contributes a new machine learning solution for stock movement
prediction, which aims to predict whether the price of a stock will be up or
down in the near future. The key novelty is that we propose to employ
adversarial training to improve the generalization of a neural network
prediction model. The rationality of adversarial training here is that the
input features to stock prediction are typically based on stock price, which is
essentially a stochastic variable and continuously changed with time by nature.
As such, normal training with static price-based features (e.g. the close
price) can easily overfit the data, being insufficient to obtain reliable
models. To address this problem, we propose to add perturbations to simulate
the stochasticity of price variable, and train the model to work well under
small yet intentional perturbations. Extensive experiments on two real-world
stock data show that our method outperforms the state-of-the-art solution with
3.11% relative improvements on average w.r.t. accuracy, validating the
usefulness of adversarial training for stock prediction task.Comment: IJCAI 201
Explainable Reasoning over Knowledge Graphs for Recommendation
Incorporating knowledge graph into recommender systems has attracted
increasing attention in recent years. By exploring the interlinks within a
knowledge graph, the connectivity between users and items can be discovered as
paths, which provide rich and complementary information to user-item
interactions. Such connectivity not only reveals the semantics of entities and
relations, but also helps to comprehend a user's interest. However, existing
efforts have not fully explored this connectivity to infer user preferences,
especially in terms of modeling the sequential dependencies within and holistic
semantics of a path. In this paper, we contribute a new model named
Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for
recommendation. KPRN can generate path representations by composing the
semantics of both entities and relations. By leveraging the sequential
dependencies within a path, we allow effective reasoning on paths to infer the
underlying rationale of a user-item interaction. Furthermore, we design a new
weighted pooling operation to discriminate the strengths of different paths in
connecting a user with an item, endowing our model with a certain level of
explainability. We conduct extensive experiments on two datasets about movie
and music, demonstrating significant improvements over state-of-the-art
solutions Collaborative Knowledge Base Embedding and Neural Factorization
Machine.Comment: 8 pages, 5 figures, AAAI-201
- …
