4 research outputs found
Recommended from our members
Quantum Simulators: Architectures and Opportunities
Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behavior to explore and solve hard scientific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the National Science Foundation workshop on “Programmable Quantum Simulators,” that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multidisciplinary collaborations with resources for quantum simulator software, hardware, and education.This document is a summary from a U.S. National Science Foundation supported workshop held on 16–17 September 2019 in Alexandria, VA. Attendees were charged to identify the scientific and community needs, opportunities, and significant challenges for quantum simulators over the next 2–5 years
Analytic ground state wave functions of mean-fieldďľ px+ipy superconductors with vortices and boundaries
We study Read and Green's mean-field model of the spinless px+ipy superconductor [N. Read and D. Green, Phys. Rev. B 61, 10267 (2000)] at a special set of parameters where we find the analytic expressions for the topologically degenerate ground states and the Majorana modes, including in finite systems with edges and in the presence of an arbitrary number of vortices. The wave functions of these ground states are similar (but not always identical) to the Moore-Read Pfaffian states proposed for the ν=5/2 fractional quantum Hall system, which are interpreted as the p-wave superconducting states of composite fermions. The similarity in the long-wavelength universal properties is expected from previous work, but at the special point studied herein the wave functions are exact even for short-range, nonuniversal properties. As an application of these results, we show how to obtain the non-Abelian statistics of the vortex Majorana modes by explicitly calculating the analytic continuation of the ground state wave functions when vortices are adiabatically exchanged, an approach different from the previous one based on universal arguments. Our results are also useful for constructing particle-number-conserving (and interacting) Hamiltonians with exact projected mean-field states