35 research outputs found

    Isolation and molecular identification of carotenoid-producing bacteria

    Get PDF
    Abstract. The production of pigments from bacteria is significant due to the low cost, high yield and ease of extract compared with other sources. Carotenoids are one of the most important pigments with antioxidant properties which are the precursor of vitamin A synthesis and have antibody overproduction ability, anti-tumor activity and inhibitory effect on the cardiovascular disease. The present study aimed to isolate and identify carotenoid-producing bacteria by highperformance liquid chromatography (HPLC) analysis of their carotenoid pigments. Twenty soil samples were collected from different regions of Tehran. After serial dilution each sample was cultured on BHI agar medium and incubated at 37°C. The pigment-producing bacteria were selected for further identification and their pigments were extracted bymethanol. The screening was carried out at two levels: i) selection of the strains by visual color inspection, ii) analysis of the pigment extracts by UV-VIS spectroscopy and HPLC. The isolates were identified by phenotypic methods and their 16S rDNA gene was amplified by PCR method and sequenced. Staphylococcus epidermidis, Micrococcus aloeverae, Citricoccus alkalitolerans, Rhodococcus zopfii, Arthrobacter agilis, Dietzia natronolimnaea and Rhodococcus ruber were identified as carotenoid-producing strains. The highest rate of absorption was observed using UV-VIS analysis in Staphylococcus epidermidis and Dietzia natronolimnaea. The comparison of HPLC analysis with the standard β-carotene curve showed that the carotenoids were beta-carotene. Micro-organisms are a potential source in the production of pigments. In this study we introduced two genera of bacteria (Staphylococcus epidermidis and Dietzia natronolimnaea) with carotenoid-producing ability

    The effect of temperature and strain rate on elongation to failure in nanostructured Al-0.2wt% Zr alloy fabricated by ARB process

    No full text
    A nano/ultra-fine grain Al-0.2wt% Zr alloy was produced by accumulated roll bonding (ARB) processafter 10 cycles. The fraction of high angle grain boundaries increased from 8% to 65.4% during 10passes during ARB process. This alloy was subjected to tensile test at different temperatures (523,573and 623 K) and strain rates (0.1 and 0.01 s-1). The optimum condition of temperature and strain rate of623k and 0.01s-1 was achieved for maximum elongation to failure, leading to 100% elongation,although maximum elongation was achieved at higher strain rate and maximum chosen temperature.In fracture surfaces after the test, dimples in higher temperature were deeper, bigger, and longer thanlow temperature. Because of presenting the superplasticity character at elevated temperature andhigher strain rate, there was no evidence of necking after failure

    Isolation and molecular identification of carotenoid-producing bacteria

    No full text
    The production of pigments from bacteria is significant due to the low cost, high yield and ease of extract compared with other sources. Carotenoids are one of the most important pigments with antioxidant properties which are the precursor of vitamin A synthesis and have antibody overproduction ability, anti-tumor activity and inhibitory effect on the cardiovascular disease. The present study aimed to isolate and identify carotenoid-producing bacteria by high-performance liquid chromatography (HPLC) analysis of their carotenoid pigments. Twenty soil samples were collected from different regions of Tehran. After serial dilution each sample was cultured on BHI agar medium and incubated at 37°C. The pigment-producing bacteria were selected for further identification and their pigments were extracted by methanol. The screening was carried out at two levels: i) selection of the strains by visual color inspection, ii) analysis of the pigment extracts by UV-VIS spectroscopy and HPLC. The isolates were identified by phenotypic methods and their 16S rDNA gene was amplified by PCR method and sequenced. Staphylococcus epidermidis, Micrococcus aloeverae, Citricoccus alkalitolerans, Rhodococcus zopfii, Arthrobacter agilis, Dietzia natronolimnaea and Rhodococcus ruber were identified as carotenoid-producing strains. The highest rate of absorption was observed using UV-VIS analysis in Staphylococcus epidermidis and Dietzia natronolimnaea. The comparison of HPLC analysis with the standard β-carotene curve showed that the carotenoids were beta-carotene. Micro-organisms are a potential source in the production of pigments. In this study we introduced two genera of bacteria (Staphylococcus epidermidis and Dietzia natronolimnaea) with carotenoid-producing ability

    Blood sugar analysis of the rats’ sera.

    No full text
    Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.</div

    S1 File -

    No full text
    Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.</div

    16s rRNA primers of the studied bacteria.

    No full text
    Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.</div

    Calibrators preparation.

    No full text
    Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.</div

    CET and HIIT exercise protocol.

    No full text
    Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.</div
    corecore