7 research outputs found

    Specificity analysis of the real-time resistance measurement.

    No full text
    <p>A. The real-time resistance curve of <i>V. parahaemolyticus</i> and other interfering bacteria. B. End-point resistance of <i>V. parahaemolyticus</i> and other interfering bacteria after a 60-min LAMP assay. C. Derivative analysis of the real-time resistance measurement.</p

    Sensitivity and regression analyses of the real-time resistance measurement.

    No full text
    <p>A. The real-time resistance curve of <i>V. parahaemolyticus</i> in a concentration gradient. B. The derivative analysis of the real-time resistance measurement of <i>V. parahaemolyticus</i>. C. The regression analysis of the real-time resistance measurement of <i>V. parahaemolyticus.</i> Three samples of the same bacterial concentration were measured twice and all values were recorded as mean(n = 6).</p

    Scheme of the real-time resistance measurement for <i>V. parahaemolyticus</i>.

    No full text
    <p>Briefly, the lecithin-dependent hemolysin (LDH) gene of <i>V. parahaemolyticus</i> was amplified by LAMP at first. The subsequent two products, DNA and pyrophosphate, both negative ions, were combined with a positive dye (Crystal violet) and positive ions (Mg2+), leading to an increase in the reaction liquid resistance. This resistance was measured in real-time using a electrode, and <i>V. parahaemolyticus</i> concentration was quantitatively detected through a derivative analysis.</p

    Structural Insight into Electrogenerated Chemiluminescence of Para-Substituted Aryl–Triazole–Thienyl Compounds

    No full text
    There has been a strong push to develop new thiophene-based monomers to tailor the electrical and optical properties of the resulting polymers. However, the synthesis of these elaborated thienyl compounds is difficult to realize. Here, we report the successful click coupling of thienyl azides and <i>para</i>-substituted aryl alkynes to synthesize eight thiophene-based luminophores intended for electrochemical and electrochemiluminescence (ECL) study. These thiophenes could be separated into two series: monothienyl and bithienyl analogues and further categorized based on the nature of the ligand attachment to their phenyl rings (electron-donating or -withdrawing characteristics: NMe<sub>2</sub>, OMe, H, or F) on the other side of the triazole bridge. The electrochemical experiments indicated these compounds lacked stability when they were oxidized or reduced, with the exception of those with a dimethylamine ligand attached (quasireversible oxidations). Cyclic and differential pulse voltammetries revealed the redox potentials of these compounds were affected by the extent of the conjugation and the nature of the ligands, while the electrochemical gaps correlated well with the energy differences between the excited and ground state species. ECL in the annihilation route confirmed the weak light-emitting nature of these thiophenes; however, great improvement was made with the use of a coreactant species (benzoyl peroxide or ammonium persulfate). ECL spectroscopy revealed that the excimer or polymeric excited states were more favorable in formation than their monomeric excited states, which was tunable based on the applied potentials. Structural insight into ECL will guide us to discover optimized thiophene-based luminophores

    Additional file 1: of PAMAM/polyhedral nanogold-modified probes with DNAase catalysis for the amperometric electrochemical detection of metastasis-associated lung adenocarcinoma transcript 1

    No full text
    Table S1. The sequence of MALAT1 probes, target, primers and nucleotide acids interfere substance. Figure S1. Catalytic activity in 2 mL of phosphate buffer (pH 7.0): a, without H2O2; b, with H2O2 (1 mM). Figure S2. Optimization of (A) pH of MALAT1CP reaction (N = 3) and (B) concentration of H2O2 between 0 and 1.8 mM·L− 1 (N = 3). Figure S3 Expression of lncRNA MALAT1 in HCC cell lines (N = 3). Table S2 Determination of MALAT1 concentration of HCC cell lines with proposed biosensors. (DOCX 218 kb
    corecore