6 research outputs found

    Activation and Inactivation of the FLT3 Kinase: Pathway Intermediates and the Free Energy of Transition

    No full text
    The aberrant expression of kinases is often associated with pathologies such as cancer and autoimmune diseases. Like other types of enzymes, kinases can adopt active and inactive states, where a shift toward more stable active state often leads to disease. Dozens of kinase inhibitors are, therefore, used as drugs. Most of these bind to either the inactive or active state. In this work, we study the transitions between these two states in FLT3, an important drug target in leukemias. Kinases are composed of two lobes (N- and C-terminal lobes) with the catalytic site in-between. Through projection of the largest motions obtained through molecular dynamics (MD) simulations, we show that each of the end-states (active or inactive) already possess the ability for transition as the two lobes rotate which initiates the transition. A targeted simulation approach known as essential dynamics sampling (EDS) was used to speed up the transition between the two protein states. Coupling the EDS to implicit-solvent MD was performed to estimate the free energy barriers of the transitions. The activation energies were found in good agreement with previous estimates obtained for other kinases. Finally, we identified FLT3 intermediates that assumed configurations that resemble that of the c-Src nonreceptor tyrosine kinase. The intermediates show better binding to the drug ponatinib than c-Src and the inactive state of FLT3. This suggests that targeting intermediate states can be used to explain the drug-binding patterns of kinases and for rational drug design

    Activation and Inactivation of the FLT3 Kinase: Pathway Intermediates and the Free Energy of Transition

    No full text
    The aberrant expression of kinases is often associated with pathologies such as cancer and autoimmune diseases. Like other types of enzymes, kinases can adopt active and inactive states, where a shift toward more stable active state often leads to disease. Dozens of kinase inhibitors are, therefore, used as drugs. Most of these bind to either the inactive or active state. In this work, we study the transitions between these two states in FLT3, an important drug target in leukemias. Kinases are composed of two lobes (N- and C-terminal lobes) with the catalytic site in-between. Through projection of the largest motions obtained through molecular dynamics (MD) simulations, we show that each of the end-states (active or inactive) already possess the ability for transition as the two lobes rotate which initiates the transition. A targeted simulation approach known as essential dynamics sampling (EDS) was used to speed up the transition between the two protein states. Coupling the EDS to implicit-solvent MD was performed to estimate the free energy barriers of the transitions. The activation energies were found in good agreement with previous estimates obtained for other kinases. Finally, we identified FLT3 intermediates that assumed configurations that resemble that of the c-Src nonreceptor tyrosine kinase. The intermediates show better binding to the drug ponatinib than c-Src and the inactive state of FLT3. This suggests that targeting intermediate states can be used to explain the drug-binding patterns of kinases and for rational drug design

    Activation and Inactivation of the FLT3 Kinase: Pathway Intermediates and the Free Energy of Transition

    No full text
    The aberrant expression of kinases is often associated with pathologies such as cancer and autoimmune diseases. Like other types of enzymes, kinases can adopt active and inactive states, where a shift toward more stable active state often leads to disease. Dozens of kinase inhibitors are, therefore, used as drugs. Most of these bind to either the inactive or active state. In this work, we study the transitions between these two states in FLT3, an important drug target in leukemias. Kinases are composed of two lobes (N- and C-terminal lobes) with the catalytic site in-between. Through projection of the largest motions obtained through molecular dynamics (MD) simulations, we show that each of the end-states (active or inactive) already possess the ability for transition as the two lobes rotate which initiates the transition. A targeted simulation approach known as essential dynamics sampling (EDS) was used to speed up the transition between the two protein states. Coupling the EDS to implicit-solvent MD was performed to estimate the free energy barriers of the transitions. The activation energies were found in good agreement with previous estimates obtained for other kinases. Finally, we identified FLT3 intermediates that assumed configurations that resemble that of the c-Src nonreceptor tyrosine kinase. The intermediates show better binding to the drug ponatinib than c-Src and the inactive state of FLT3. This suggests that targeting intermediate states can be used to explain the drug-binding patterns of kinases and for rational drug design

    Influence of Antifreeze Proteins on the Ice/Water Interface

    No full text
    Antifreeze proteins (AFP) are responsible for the survival of several species, ranging from bacteria to fish, that encounter subzero temperatures in their living environment. AFPs have been divided into two main families, moderately and hyperactive, depending on their thermal hysteresis activity. We have studied one protein from both families, the AFP from the snow flea (sfAFP) and from the winter flounder (wfAFP), which belong to the hyperactive and moderately active family, respectively. On the basis of molecular dynamics simulations, we have estimated the thickness of the water/ice interface for systems both with and without the AFPs attached onto the ice surface. The calculation of the diffusion profiles along the simulation box allowed us to measure the interface width for different ice planes. The obtained widths clearly show a different influence of the two AFPs on the ice/water interface. The different impact of the AFPs here studied on the interface thickness can be related to two AFPs properties: the protein hydrophobic surface and the number of hydrogen bonds that the two AFPs faces form with water molecules

    Induced Ice Melting by the Snow Flea Antifreeze Protein from Molecular Dynamics Simulations

    No full text
    Antifreeze proteins (AFP) allow different life forms, insects as well as fish and plants, to survive in subzero environments. AFPs prevent freezing of the physiological fluids. We have studied, through molecular dynamics simulations, the behavior of the small isoform of the AFP found in the snow flea (sfAFP), both in water and at the ice/water interface, of four different ice planes. In water at room temperature, the structure of the sfAFP is found to be slightly unstable. The loop between two polyproline II helices has large fluctuations as well as the C-terminus. Torsional angle analyses show a decrease of the polyproline II helix area in the Ramachandran plots. The protein structure instability, in any case, should not affect its antifreeze activity. At the ice/water interface the sfAFP triggers local melting of the ice surface. Bipyramidal, secondary prism, and prism ice planes melt in the presence of AFP at temperatures below the melting point of ice. Only the basal plane is found to be stable at the same temperatures, indicating an adsorption of the sfAFP on this ice plane as confirmed by experimental evidence

    Inclusion of Chloromethane Guests Affects Conformation and Internal Dynamics of Cryptophane-D Host

    No full text
    Cryptophane-D is composed of two nonequivalent cyclotribenzylene caps bound together by three OCH<sub>2</sub>CH<sub>2</sub>O bridges in a syn arrangement. Host–guest complexes with chloroform and dichloromethane were investigated in solution by NMR spectroscopy. Variable temperature NMR <sup>1</sup>H and <sup>13</sup>C spectra showed effects of chemical exchange between the free and bound guest and of conformational exchange for the host, strongly and specifically affected by guest binding. We found in particular that the carbon-13 chemical shifts for the linkers connecting the two cyclotribenzylene units are very informative. The NMR results were supported by DFT calculations. The guest exchange was also studied quantitatively, either by EXSY measurements (for chloroform as guest) or by line-shape analysis (for dichloromethane as guest). In the case of chloroform guest, we also investigated cross-relaxation between the guest and host protons, as well as carbon-13 longitudinal relaxation and heteronuclear NOE at three different fields. The results were interpreted in terms of orientation and dynamics of the guest inside the host cavity. Putting together various types of evidence resulted in remarkably detailed insight into the process of molecular recognition of the two guests by cryptophane-D host
    corecore