38 research outputs found

    Modular Entanglement

    Full text link
    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.Comment: 4 pages, 6 figure

    Reconstruction of Markovian Master Equation parameters through symplectic tomography

    Full text link
    In open quantum systems, phenomenological master equations with unknown parameters are often introduced. Here we propose a time-independent procedure based on quantum tomography to reconstruct the potentially unknown parameters of a wide class of Markovian master equations. According to our scheme, the system under investigation is initially prepared in a Gaussian state. At an arbitrary time t, in order to retrieve the unknown coefficients one needs to measure only a finite number (ten at maximum) of points along three time-independent tomograms. Due to the limited amount of measurements required, we expect our proposal to be especially suitable for experimental implementations.Comment: 7 pages, 3 figure

    A tomographic approach to non-Markovian master equations

    Full text link
    We propose a procedure based on symplectic tomography for reconstructing the unknown parameters of a convolutionless non-Markovian Gaussian noisy evolution. Whenever the time-dependent master equation coefficients are given as a function of some unknown time-independent parameters, we show that these parameters can be reconstructed by means of a finite number of tomograms. Two different approaches towards reconstruction, integral and differential, are presented and applied to a benchmark model made of a harmonic oscillator coupled to a bosonic bath. For this model the number of tomograms needed to retrieve the unknown parameters is explicitly computed.Comment: 15 pages, 2 figure

    Endogenous crisis waves: a stochastic model with synchronized collective behavior

    Full text link
    We propose a simple framework to understand commonly observed crisis waves in macroeconomic Agent Based models, that is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.Comment: 5 pages, 3 figures. This paper is part of the CRISIS project, http://www.crisis-economics.e

    Control of open quantum systems: case study of the central spin model

    Get PDF
    We study the controllability of a central spin guided by a classical field and interacting with a spin bath, showing that the central spin is fully controllable independently of the number of bath spins. Additionally we find that for unequal system-bath couplings even the bath becomes controllable by acting on the central spin alone. We then analyze numerically how the time to implement gates on the central spin scales with the number of bath spins and conjecture that for equal system-bath couplings it reaches a saturation value. We provide evidence that sometimes noise can be effectively suppressed through control

    Perfect state transfer in long-range interacting spin chains

    Full text link
    We investigate the most general conditions under which a finite ferromagnetic long-range inter- acting spin chain achieves unitary fidelity and the shortest transfer time in transmitting an unknown input qubit. A deeper insight into system dynamics, allows us to identify an ideal system involving sender and receiver only. However, this two-spin ideal chain is unpractical due to the rapid decrease of the coupling strength with the distance. Therefore, we propose an optimization scheme for ap- proaching the ideal behaviour, while keeping the interaction strength still reasonably high. The procedure is scalable with the size of the system and straightforward to implement.Comment: 5 pages, 5 figure
    corecore