52 research outputs found

    The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting.

    Get PDF
    The sorting of G protein-coupled receptors (GPCRs) to lysosomes is critical for proper signaling and cellular responses. We previously showed that the adaptor protein ALIX regulates lysosomal degradation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, independent of ubiquitin-binding ESCRTs and receptor ubiquitination. However, the mechanisms that regulate ALIX function during PAR1 lysosomal sorting are not known. Here we show that the mammalian α-arrestin arrestin domain-containing protein-3 (ARRDC3) regulates ALIX function in GPCR sorting via ubiquitination. ARRDC3 colocalizes with ALIX and is required for PAR1 sorting at late endosomes and degradation. Depletion of ARRDC3 by small interfering RNA disrupts ALIX interaction with activated PAR1 and the CHMP4B ESCRT-III subunit, suggesting that ARRDC3 regulates ALIX activity. We found that ARRDC3 is required for ALIX ubiquitination induced by activation of PAR1. A screen of nine mammalian NEDD4-family E3 ubiquitin ligases revealed a critical role for WWP2. WWP2 interacts with ARRDC3 and not ALIX. Depletion of WWP2 inhibited ALIX ubiquitination and blocked ALIX interaction with activated PAR1 and CHMP4B. These findings demonstrate a new role for the α-arrestin ARRDC3 and the E3 ubiquitin ligase WWP2 in regulation of ALIX ubiquitination and lysosomal sorting of GPCRs

    Ubiquitination as a Key Regulator of Endosomal Signaling by GPCRs

    Get PDF
    G protein-coupled receptors (GPCRs) represent the largest family of therapeutic targets for FDA approved drugs. Therefore, understanding the molecular regulation of their signaling pathways is of paramount importance. Similarly, the mitogen activated protein kinase (MAPK) p38 is a critical mediator of proinflammatory disease. Yet despite decades of intense investigation, therapeutically viable inhibitors have struggled to make it into the clinic. New studies describing the regulation and activation of a GPCR dependent atypical p38 signaling pathway represents a novel therapeutic avenue to the treatment of many proinflammatory disorders. These recent studies have defined how thrombin and ADP can induce Src dependent activation of the E3 ubiquitin ligase NEDD4-2. Src dependent phosphorylation of a 2,3-linker peptide releases NEDD4-2 auto-inhibition and triggers the induction of proinflammatory atypical p38 signaling from the endosome. Activation of the atypical p38 pathway requires the direct interaction between an adaptor protein TAB1 and p38, that bypasses the requirement for the classical MKK3/6 dependent activation of p38. Therefore, providing a mechanism to specifically block proinflammatory GPCR atypical p38 activation while leaving basic p38 activity intact. Critically, new studies demonstrated that disruption of the TAB1-p38 interface is a druggable target, that would enable the selective inhibition of proinflammatory p38 signaling and ischemic injury. Atypical p38 signaling is linked to multiple clinically relevant pathologies including inflammation, cardiotoxicity, myocardial ischemia and ischemia reperfusion injury. Therefore, GPCR induced endosomal p38 signaling represents a novel understudied branch of proinflammatory p38 signaling and an ideal potential therapeutic target that warrants further investigation

    Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes.

    Get PDF
    Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β-activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2-mediated ubiquitination and TAB1-TAB2. TAB1-TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption
    corecore