29,202 research outputs found

    Gambling in Great Britain:a response to Rogers

    Get PDF
    A recent issue of Practice: Social Work in Action featured a paper by Rogers that examined whether the issue of problem gambling was a suitable case for social work. Rogers’ overview was (in various places) out of date, highly selective, contradictory, presented unsupported claims and somewhat misleading. Rogers’ paper is to be commended for putting the issue of problem gambling on the social work agenda. However, social workers need up-to-date information and contextually situated information if they are to make informed decisions in helping problem gamblers

    Studying the Perturbative Reggeon

    Get PDF
    We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ``reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q^2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel.Comment: LaTeX, 21 pages, 16 figure

    Analysis of a Three Phase Induction Motor Directly from Maxwell's Equations

    Full text link
    The torque developed in a three phase AC squirrel cage motor is usually expressed in terms of resistances and reactances of the stator, the rotor, and the motor as a whole. We use Maxwell's equations to find the torque in terms of geometrical parameters. This allows us to estimate the torque developed by a motor without knowing the details of its circuitry

    Estimating Lorenz Curves Using a Dirichlet Distribution.

    Get PDF
    The Lorenz curve relates the cumulative proportion of income to the cumulative proportion of population. When a particular functional form of the Lorenz curve is specified it is typically estimated by linear or nonlinear least squares, estimation techniques that have good properties when the error terms are independently and normally distributed. Observations on cumulative proportions are clearly neither independent nor normally distributed. This paper proposes and applies a new methodology that recognises the cumulative proportional nature of the Lorenz curve data by assuming that the income proportions are distributed as a Dirichlet distribution. Five Lorenz-curve specifications are used to demonstrate the technique. Maximum likelihood estimates under the Dirichlet distribution assumption provide better-fitting Lorenz curves than nonlinear least squares and another estimation technique that has appeared in the literature.Gini coefficient; maximum likelihood estimation

    On Calculation of the Extended Gini Coefficient.

    Get PDF
    The conventional formula for estimating the extended Gini coefficient is a covariance formula provided by Lerman and Yitzhaki (1989). We suggest an alternative estimator obtained by approximating the Lorenz curve by a series of linear segments. In a Monte Carlo experiment designed to assess the relative bias and efficiency of the two estimators, we find that, when using grouped data with 20 or less groups, our new estimator has less bias and lower mean squared error than the covariance estimator. When individual observations are used, or the number of groups is 30 or more, there is little or no difference in the performance of the two estimators.ESTIMATORS ; COEFFICIENTS ; EFFICIENCY

    The surface-tension-driven evolution of a two-dimensional annular viscous tube

    Get PDF
    We consider the evolution of an annular two-dimensional region occupied by viscous fluid driven by surface tension and applied pressure at the free surfaces. We assume that the thickness of the domain is small compared with its circumference so that it may be described as a thin viscous sheet whose ends are joined to form a closed loop. Analytical and numerical solutions of the resulting model are obtained and we show that it is well posed whether run forwards or backwards in time. This enables us to determine, in many cases explicitly, which initial shapes will evolve into a desired final shape. We also show how the application of an internal pressure may be used to control the evolution. This work is motivated by the production of non-axisymmetric capillary tubing via the Vello process. Molten glass is fed through a die and drawn off vertically, while the shape of the cross-section evolves under surface tension and any applied pressure as it flows downstream. Here the goal is to determine the die shape required to achieve a given desired final shape, typically square or rectangular. We conclude by discussing the role of our two-dimensional model in describing the three-dimensional tube-drawing process