13 research outputs found

    Urbanization and Daily Exposure to Biomass Fuel Smoke Both Contribute to Chronic Bronchitis Risk in a Population with Low Prevalence of Daily Tobacco Smoking

    No full text
    <p><b><i>Objective</i></b>: Risk factors beyond tobacco smoking associated with chronic bronchitis are not well understood. We sought to describe the prevalence and risk factors of chronic bronchitis across four distinct settings in Peru with overall low prevalence of tobacco smoking yet varying degrees of urbanization, daily exposure to biomass fuel smoke and living at high altitude. <b><i>Methods</i></b>: We analyzed data of 2,947 participants from rural and urban Puno, Lima and Tumbes including spirometry, blood samples, anthropometry and administered questionnaires about respiratory symptoms. We used multivariable Poisson regression to assess biologic, socioeconomic and environmental risk factors associated with chronic bronchitis. <b><i>Results</i></b>: Overall prevalence of chronic bronchitis was 5.9% (95%CI 5.1%–6.9%) with variation by setting: prevalence was lower in semi-urban Tumbes (1.3%) vs. highly urbanized Lima (8.9%), urban Puno (7.0%) and rural Puno (7.8%; p < 0.001). Chronic bronchitis was more common among participants with vs. without COPD based on FEV<sub>1</sub>/FVC< LLN (12.1% vs 5.6%, p < 0.01) and it was associated with increased reporting of dyspnea on exertion (p < 0.001), hospitalization (p = 0.003) and workdays missed due to respiratory symptoms (p < 0.001). Older age (Prevalence ratio [PR] = 1.23 for each 10-years of age, 95%CI 1.09–1.40) past history of asthma (PR = 2.87, 95%CI 1.80–4.56), urbanization (PR = 3.34, 95%CI 2.18–5.11) and daily exposure to biomass fuel smoke (PR = 2.00, 95%CI 1.30–3.07) were all associated with chronic bronchitis. <b><i>Conclusions</i></b>: We found important variations in the prevalence of chronic bronchitis across settings. Prevalence increased with both urbanization and with daily exposure to biomass fuel smoke. Having chronic bronchitis was also associated with worse patient-centered outcomes including dyspnea, hospitalization and missed workdays.</p

    A pilot feeding study for adults with asthma: The healthy eating better breathing trial

    No full text
    <div><p>Rationale</p><p>Evidence from observational studies and to a lesser extent clinical trials suggest that a healthy diet may improve symptoms and lung function in patients with asthma. We conducted a pilot study to determine the feasibility of conducting a larger scale dietary trial and to provide preliminary evidence on the impact of a healthy diet on asthma outcomes.</p><p>Methods</p><p>In a randomized, two period cross-over trial, participants with asthma received a 4-week dietary intervention followed by a usual diet (or vice versa), separated by a 4-week washout. The dietary intervention was a healthy diet rich in unsaturated fat. During the dietary intervention, participants ate three meals per week on site at the Johns Hopkins ProHealth Research Center. All remaining meals and snacks were provided for participants to consume off-site. During the control diet, participants were instructed to continue their usual dietary intake. Relevant biomarkers and asthma clinical outcomes were assessed at 0, 2, and 4 weeks after starting each arm of the study.</p><p>Results</p><p>Eleven participants were randomized, and seven completed the full study protocol. Among these seven participants, average age was 42 years, six were female, and six were African American. Participant self-report of dietary intake revealed significant increases in fruit, vegetable, and omega-3 fatty acid intake with the dietary intervention compared to usual diet. Serum carotenoids (eg. lutein and beta-cryptoxanthin) increased in the intervention versus control. Total cholesterol decreased in the intervention versus control diet. There was no consistent effect on asthma outcomes.</p><p>Conclusions</p><p>The findings suggest that a feeding trial in participants with asthma is feasible. Larger trials are needed to definitively assess the potential benefits of dietary interventions on pulmonary symptoms and function in patients with asthma.</p></div

    Select asthma morbidity outcomes.

    No full text
    <p>Data in each graph represent the change in value from week 0 to week 4 of the control diet and the change in value from week 0 to week 4 of the intervention diet. Points are linked by lines connecting responses within individual participants.</p
    corecore