21 research outputs found
Consistent multiphase-field theory for interface driven multidomain dynamics
We present a new multiphase-field theory for describing pattern formation in
multi-domain and/or multi-component systems. The construction of the free
energy functional and the dynamic equations is based on criteria that ensure
mathematical and physical consistency. We first analyze previous
multiphase-field theories, and identify their advantageous and disadvantageous
features. On the basis of this analysis, we introduce a new way of constructing
the free energy surface, and derive a generalized multiphase description for
arbitrary number of phases (or domains). The presented approach retains the
variational formalism; reduces (or extends) naturally to lower (or higher)
number of fields on the level of both the free energy functional and the
dynamic equations; enables the use of arbitrary pairwise equilibrium
interfacial properties; penalizes multiple junctions increasingly with the
number of phases; ensures non-negative entropy production, and the convergence
of the dynamic solutions to the equilibrium solutions; and avoids the
appearance of spurious phases on binary interfaces. The new approach is tested
for multi-component phase separation and grain coarsening
Hydrodynamic theory of freezing: Nucleation and polycrystalline growth
Structural aspects of crystal nucleation in undercooled liquids are explored
using a nonlinear hydrodynamic theory of crystallization proposed recently [G.
I. Toth et al., J. Phys.: Condens. Matter 26, 055001 (2014)], which is based on
combining fluctuating hydrodynamics with the phase-field crystal theory. We
show that in this hydrodynamic approach not only homogeneous and heterogeneous
nucleation processes are accessible, but also growth front nucleation, which
leads to the formation of new (differently oriented) grains at the solid-liquid
front in highly undercooled systems. Formation of dislocations at the
solid-liquid interface and interference of density waves ahead of the
crystallization front are responsible for the appearance of the new
orientations at the growth front that lead to spherulite-like nanostructures
Crystallization: colloidal suspense
According to classical nucleation theory, a crystal grows from a small nucleus that already bears the symmetry of its end phase—but experiments with colloids now reveal that, from an amorphous precursor, crystallites with different structures can develop
Grain coarsening in two-dimensional phase-field models with an orientation field
In the literature, contradictory results have been published regarding the
form of the limiting (long-time) grain size distribution (LGSD) that
characterizes the late stage grain coarsening in two-dimensional and
quasi-two-dimensional polycrystalline systems. While experiments and the
phase-field crystal (PFC) model (a simple dynamical density functional theory)
indicate a lognormal distribution, other works including theoretical studies
based on conventional phase-field simulations that rely on coarse grained
fields, like the multi-phase-field (MPF) and orientation field (OF) models,
yield significantly different distributions. In a recent work, we have shown
that the coarse grained phase-field models (whether MPF or OF) yield very
similar limiting size distributions that seem to differ from the theoretical
predictions. Herein, we revisit this problem, and demonstrate in the case of OF
models [by R. Kobayashi et al., Physica D 140, 141 (2000) and H. Henry et al.
Phys. Rev. B 86, 054117 (2012)] that an insufficient resolution of the small
angle grain boundaries leads to a lognormal distribution close to those seen in
the experiments and the molecular scale PFC simulations. Our work indicates,
furthermore, that the LGSD is critically sensitive to the details of the
evaluation process, and raises the possibility that the differences among the
LGSD results from different sources may originate from differences in the
detection of small angle grain boundaries
Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy
A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed model can be made quantitative for Ag-Cu. Next, we explore the effect of material properties, and the conditions of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free energies (solid-liquid and solid-solid), the crystal misorientation relative to pulling, the lateral temperature gradient, play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two solid phases are drastically different
Investigating nucleation using the phase-field method
The first order phase transitions, like freezing of liquids, melting of solids, phase separation in alloys, vapor condensation, etc., start with nucleation, a process in which internal fluctuations of the parent phase lead to formation of small seeds of the new phase. Owing to different size dependence of (negative) volumetric and (positive) interfacial contributions to work of formation of such seeds, there is a critical size, at which the work of formation shows a maximum. Seeds that are smaller than the critical one decay with a high probability, while the larger ones have a good chance to grow further and reach a macroscopic size. Putting it in another way, to form the bulk new phase, the system needs to pass a thermodynamic barrier via thermal fluctuations. When the fluctuations of the parent phase alone lead to transition, the process is called homogeneous nucleation. Such a homogeneous process is, however, scarcely seen and requires very specific conditions in nature or in the laboratory. Usually, the parent phase resides in a container and/or it incorporates floating heterogeneities (solid particles, droplets, etc.). The respective foreign surfaces lead to ordering of the adjacent liquid layers, which in turn may assist the formation of the seeds, a process termed heterogeneous nucleation. Herein, we review how the phase-field techniques contributed to the understanding of various aspects of crystal nucleation in undercooled melts, and its role in microstructure evolution. We recall results achieved using both conventional phase-field techniques that rely on spatially averaged (coarse grained) order parameters in capturing the phase transition, as well as molecular scale phase-field approaches that employ time averaged fields, as happens in the classical density functional theories, including the recently developed phase-field crystal models
Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms
We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation
fields: one by Kobayashi et al. [Physica D 140 (2000) 141] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117]. Setting
the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we
first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments
on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier
work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605], we extend the orientation field to the
liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic
solidification, and polycrystalline growth, including the formation of “dizzy” dendrites disordered via the interaction with foreign
particles
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
Here we review the basic concepts and applications of the phase-field-crystal (PFC) method,
which is one of the latest simulation methodologies in materials science for problems, where
atomic- and microscales are tightly coupled. The PFC method operates on atomic length and
diffusive time scales, and thus constitutes a computationally efficient alternative to molecular
simulation methods. Its intense development in materials science started fairly recently following
the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial
studies, dynamical density functional theory and thermodynamic concepts have been linked to
the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we
summarize these methodological development steps as well as the most important applications
of the PFC method with a special focus on the interaction of development steps taken in hard
and soft matter physics, respectively. Doing so, we hope to present today’s state of the art in
PFC modelling as well as the potential, which might still arise from this method in physics and
materials science in the nearby future