143 research outputs found

    The Origin and Properties of Intracluster Stars in a Rich Cluster

    Full text link
    We use a multi million particle N-body + SPH simulation to follow the formation of a rich galaxy cluster in a Lambda+CDM cosmology, with the goal of understanding the origin and properties of intracluster stars. The simulation includes gas cooling, star formation, the effects of a uniform UVB and feedback from supernovae. Halos that host galaxies as faint as M_R = -19.0 are resolved by this simulation, which includes 85% of the total galaxy luminosity in a rich cluster. We find that the accumulation of intracluster light (ICL) is an ongoing process, linked to infall and stripping events. The unbound star fraction increases with time and is 20% at z = 0, consistent with observations of galaxy clusters. The surface brightness profile of the cD shows an excess compared to a de Vaucouleur profile near 200 kpc, which is also consistent with observations. Both massive and small galaxies contribute substantially to the formation of the ICL, with stars stripped preferentially from the outer parts of their stellar distributions. Simulated observations of planetary nebulae (PNe) show significant substructure in velocity space. Despite this, individual intracluster PNe might be useful mass tracers if more than 5 fields at a range of radii have measured line-of-sight velocities, where an accurate mass calculation depends more on the number of fields than the number of PNe measured per field. However, the orbits of IC stars are more anisotropic than those of galaxies or dark matter, which leads to a systematic underestimate of cluster mass relative to that calculated with galaxies, if not accounted for in dynamical models. Overall, the properties of ICL formed in a hierarchical scenario are in good agreement with current observations. (Abridged)Comment: Replaced with MNRAS published version. One corrected figure, minor text changes. MNRAS, 355, 15

    Off the Beaten Path: A New Approach to Realistically Model The Orbital Decay of Supermassive Black Holes in Galaxy Formation Simulations

    Full text link
    We introduce a force correction term to better model the dynamical friction (DF) experienced by a supermassive black hole (SMBH) as it orbits within its host galaxy. This new approach accurately follows the orbital decay of a SMBH and drastically improves over commonly used advection methods. The force correction introduced here naturally scales with the force resolution of the simulation and converges as resolution is increased. In controlled experiments we show how the orbital decay of the SMBH closely follows analytical predictions when particle masses are significantly smaller than that of the SMBH. In a cosmological simulation of the assembly of a small galaxy, we show how our method allows for realistic black hole orbits. This approach overcomes the limitations of the advection scheme, where black holes are rapidly and artificially pushed toward the halo center and then forced to merge, regardless of their orbits. We find that SMBHs from merging dwarf galaxies can spend significant time away from the center of the remnant galaxy. Improving the modeling of SMBH orbital decay will help in making robust predictions of the growth, detectability, and merger rates of SMBHs, especially at low galaxy masses or at high redshift.Comment: 8 pages, 4 figure, Accepted by MNRA

    The Baryon Cycle of Dwarf Galaxies: Dark, Bursty, Gas-Rich Polluters

    Full text link
    We present results from a fully cosmological, very high-resolution, LCDM "zoom-in" simulation of a group of seven field dwarf galaxies with present-day virial masses in the range M_vir=4.4e8-3.6e10 Msun. The simulation includes a blastwave scheme for supernova feedback, a star formation recipe based on a high gas density threshold, metal-dependent radiative cooling, a scheme for the turbulent diffusion of metals and thermal energy, and a uniform UV background that modifies the ionization and excitation state of the gas. The properties of the simulated dwarfs are strongly modulated by the depth of the gravitational potential well. All three halos with M_vir < 1e9 Msun are devoid of stars, as they never reach the density threshold for star formation of 100 atoms/cc. The other four, M_vir > 1e9 Msun dwarfs have blue colors, low star formation efficiencies, high cold gas to stellar mass ratios, and low stellar metallicities. Their bursty star formation histories are characterized by peak specific star formation rates in excess of 50-100 1/Gyr, far outside the realm of normal, more massive galaxies, and in agreement with observations of extreme emission-line starbursting dwarfs by the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. Metal-enriched galactic outflows produce sub-solar effective yields and pollute with heavy elements a Mpc-size region of the intergalactic medium, but are not sufficient to completely quench star formation activity and are not ubiquitous in our dwarfs. Within the limited size of the sample, our simulations appear to simultaneously reproduce the observed stellar mass and cold gas content, resolved star formation histories, stellar kinematics, and metallicities of field dwarfs in the Local Volume.Comment: 15 pages, 10 figures, version accepted for publication in The Astrophysical Journa

    Dancing to ChaNGa: A Self-Consistent Prediction For Close SMBH Pair Formation Timescales Following Galaxy Mergers

    Get PDF
    We present the first self-consistent prediction for the distribution of formation timescales for close Supermassive Black Hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc^-3 Gyr^-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyrs of orbital evolution following the galaxy merger. The likelihood and timescale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived 'wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter timescales on average. This timescale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.Comment: 11 pages, 7 figures, accepted for publication in MNRA
    corecore