2 research outputs found
Gaussian width bounds with applications to arithmetic progressions in random settings
Motivated by two problems on arithmetic progressions (APs)—concerning large
deviations for AP counts in random sets and random differences in Szemer´edi’s theorem—
we prove upper bounds on the Gaussian width of the image of the n-dimensional Boolean
hypercube under a mapping ψ : Rn → Rk, where each coordinate is a constant-degree
multilinear polynomial with 0/1 coefficients. We show the following applications of our
bounds. Let [Z/NZ]p be the random subset of Z/NZ containing each element independently
with probability p.
• Let Xk be the number of k-term APs in [Z/NZ]p. We show that a precise estimate
on the large deviation rate log Pr[Xk ≥ (1 + δ)EXk] due to Bhattacharya, Ganguly,
Shao and Zhao is valid if
Recommended from our members
Outlaw distributions and locally decodable codes
Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in L∞ norm) with a small number of samples. We coin the term “outlaw distributions” for such distributions since they “defy” the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently “smooth” functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters