31 research outputs found
Managing heat phenomena in epoxy composites production via graphenic derivatives: synthesis, properties and industrial production simulation of graphene and graphene oxide containing composites
A commercial two-components epoxy resin formulation was successfully modified by adding graphene and related materials (GRMs) and the effect of these nanofillers was assessed on their thermomechanical properties as well as on the simulation of their industrial application for the production of thick composites objects with interesting results. GMRs were added in different concentrations in order to improve thermo-mechanical properties of the nano-composite thermoset. Different dispersion methods were taken into account in order to produce stable long-lasting dispersion of the GRMs, that can withstand a commercial shelf life. Addition of the GRMs improves the glass transition temperature of the nanocomposite up to 20 °C with respect to the plain commercial formulation, and both stress and elongation at break increase up to almost 4 times the original values. Moreover, the industrial curing of some of the more promising modified resins was computer-simulated when the two-components resins are used to produce a carbon-fibre reinforced thick composite beam. Simulation results show that some of the applied GRMs helps reducing or even completely preventing the overheat phenomena that are well renown to induce significant thermal stresses negatively affecting the final object performances. These interesting effects would contribute reducing the time required for a single industrial production cycle, since no time for overheat dispersion is required, thus helping increasing the production rate
Cubic and Hexagonal Mesophases for Protein Encapsulation: Structural Effects of Insulin Confinement
Monoolein-based cubic and hexagonal mesophases were investigated as matrices for insulin loading, at low pH, as a function of temperature and in the presence of increasing amounts of oleic acid, as a structural stabilizer for the hexagonal phase. Synchrotron small angle X-ray diffraction, rheological measurements, and attenuated total reflection-Fourier transform infrared spectroscopy were used to study the effects of insulin loading on the lipid mesophases and of the effect of protein confinement in the 2D-and 3D-lipid matrix water channels on its stability and unfolding behavior. We found that insulin encapsulation has only little effects both on the mesophase structures and on the viscoelastic properties of lipid systems, whereas protein confinement affects the response of the secondary structure of insulin to thermal changes in a different manner according to the specific mesophase: in the cubic structure, the unfolding toward an unordered structure is favored, while the prevalence of parallel β-sheets, and nuclei for fibril formation, is observed in hexagonal structures
Bosonizing one-dimensional cold atomic gases
We present results for the long-distance asymptotics of correlation functions
of mesoscopic one-dimensional systems with periodic and open (Dirichlet)
boundary conditions, as well as at finite temperature in the thermodynamic
limit. The results are obtained using Haldane's harmonic-fluid approach (also
known as ``bosonization''), and are valid for both bosons and fermions, in
weakly and strongly interacting regimes. The harmonic-fluid approach and the
method to compute the correlation functions using conformal transformations are
explained in great detail. As an application relevant to one-dimensional
systems of cold atomic gases, we consider the model of bosons interacting with
a zero-range potential. The Luttinger-liquid parameters are obtained from the
exact solution by solving the Bethe-ansatz equations in finite-size systems.
The range of applicability of the approach is discussed, and the prefactor of
the one-body density matrix of bosons is fixed by finding an appropriate
parametrization of the weak-coupling result. The formula thus obtained is shown
to be accurate, when compared with recent diffusion Montecarlo calculations,
within less than 10%. The experimental implications of these results for Bragg
scattering experiments at low and high momenta are also discussed.Comment: 39 pages + 14 EPS figures; typos corrected, references update
Final results of magnetic monopole searches with the MACRO experiment
We present the final results obtained by the MACRO experiment in the search
for GUT magnetic monopoles in the penetrating cosmic radiation, for the range
. Several searches with all the MACRO sub-detectors
(i.e. scintillation counters, limited streamer tubes and nuclear track
detectors) were performed, both in stand alone and combined ways. No candidates
were detected and a 90% Confidence Level (C.L.) upper limit to the local
magnetic monopole flux was set at the level of cm
s sr. This result is the first experimental limit obtained in
direct searches which is well below the Parker bound in the whole range
in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table
Applying Tropos Methodology to a real case study: Complexity and Criticality Analysis
Currently in Requirements Engineering the attention is being focused more and more on the understanding of a problem by studying the existing organizational setting in which the system will operate. In this paper we present the application of the Tropos early requirements analysis to a real case study, the Ice Co. We introduce a new type of analysis for actor diagrams based on two different parameters, complexity and criticality, and we show the results we obtained during the case study
Modelling the Histograms of Various Classes in SAR Images.
Abstract not availableJRC.H-Institute for environment and sustainability (Ispra
A Cultural Heritage Repository as Source for Learning Materials
No description supplie
Content and Concept-Based Retrieval and Navigation Tools In Sculpteur (Semantic and . . .
The Sculpteur project provides an environment for intelligent retrieval and indexing of multimedia objects related to cultural collections stored in a set of networked databases. The paper gives an overview of the Sculpteur system and illustrates how the ontology developed in Sculpteur describing the application domains of the galleries and museums involved in the project, coupled to the content based analysis can be used to navigate the collections and enhance the content based retrieval