1,442 research outputs found
The Bose polaron problem: effect of mass imbalance on binding energy
By means of Quantum Monte Carlo methods we calculate the binding energy of an
impurity immersed in a Bose-Einstein condensate at T = 0. The focus is on the
attractive branch of the Bose polaron and on the role played by the mass
imbalance between the impurity and the surrounding particles. For an impurity
resonantly coupled to the bath, we investigate the dependence of the binding
energy on the mass ratio and on the interaction strength within the medium. In
particular, we determine the equation of state in the case of a static
(infinite mass) impurity, where three-body correlations are irrelevant and the
result is expected to be a universal function of the gas parameter. For the
mass ratio corresponding to K impurities in a gas of Rb atoms we
provide an explicit comparison with the experimental findings of a recent study
carried out at JILA.Comment: 5 pages, 3 figure
Self-contained breathing apparatus
A self-contained breathing apparatus with automatic redundant fluid pressure controls and a facemask mounted low pressure whistle alarm is described. The first stage of the system includes pair of pressure regulators connected in parallel with different outlet pressures, both of which reduce the pressure of the stored supply gas to pressures compatible with the second stage breathing demand regulator. A primary regulator in the first stage delivers a low output pressure to the demand regulator. In the event of a failure closed condition of the primary regulator an automatic transfer valve switches on the backup regulator. A warning that the supply pressure has been depleted is also provided by a supply pressure actuated transfer valve which transfers the output of the first stage pressure regulators from the primary to the backup regulator. The alarm is activated in either the failure closed condition or if the supply pressure is reduced to a dangerously low level
Single-particle vs. pair superfluidity in a bilayer system of dipolar bosons
We consider the ground state of a bilayer system of dipolar bosons, where
dipoles are oriented by an external field in the direction perpendicular to the
parallel planes. Quantum Monte Carlo methods are used to calculate the
ground-state energy, the one-body and two-body density matrix, and the
superfluid response as a function of the separation between layers. We find
that by decreasing the interlayer distance for fixed value of the strength of
the dipolar interaction, the system undergoes a quantum phase transition from a
single-particle to a pair superfluid. The single-particle superfluid is
characterized by a finite value of both the atomic condensate and the
super-counterfluid density. The pair superfluid phase is found to be stable
against formation of many-body cluster states and features a gap in the
spectrum of elementary excitations.Comment: 4 figure
Quantitative test of thermal field theory for Bose-Einstein condensates II
We have recently derived a gapless theory of the linear response of a
Bose-condensed gas to external perturbations at finite temperature and used it
to explain quantitatively the measurements of condensate excitations and decay
rates made at JILA [D. S. Jin et.al., Phys. Rev. Lett. 78, 764 (1997)]. The
theory describes the dynamic coupling between the condensate and non-condensate
via a full quasiparticle description of the time-dependent normal and anomalous
averages and includes all Beliaev and Landau processes. In this paper we
provide a full discussion of the numerical calculations and a detailed analysis
of the theoretical results in the context of the JILA experiment. We provide
unambiguous proof that the dipole modes are obtained accurately within our
calculations and present quantitative results for the relative phase of the
oscillations of the condensed and uncondensed atom clouds. One of the main
difficulties in the implementation of the theory is obtaining results which are
not sensitive to basis cutoff effects and we have therefore developed a novel
asymmetric summation method which solves this problem and dramatically improves
the numerical convergence. This new technique should make the implementation of
the theory and its possible future extensions feasible for a wide range of
condensate populations and trap geometries.Comment: 23 pages, 11 figures, revtex 4. Submitted to PRA. Sequel to: S. A.
Morgan et al, PRL, 91, 250403 (2003
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
We calculate the shift in the critical temperature of Bose-Einstein
condensation for a dilute Bose-Fermi mixture confined by a harmonic potential
to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The
relative importance of the effect on the critical temperature of the
boson-boson and boson-fermion interactions is investigated as a function of the
parameters of the mixture. The possible relevance of the shift of the
transition temperature in current experiments on trapped Bose-Fermi mixtures is
discussed.Comment: 15 pages, 2 figures, submitted to J. Phys.
Theory of Bose-Einstein condensation and superfluidity of two-dimensional polaritons in an in-plane harmonic potential
Recent experiments have shown that it is possible to create an in-plane
harmonic potential trap for a two-dimensional (2D) gas of exciton-polaritons in
a microcavity structure, and evidence has been reported of Bose-Einstein
condensation of polaritons accumulated in this type of trap. We present here
the theory of Bose-Einstein condensation (BEC) and superfluidity of the exciton
polaritons in a harmonic potential trap. Along the way, we determine a general
method for defining the superfluid fraction in a 2D trap, in terms of angular
momentum representation. We show that in the continuum limit, as the trap
becomes shallower the superfluid fraction approaches the 2D Kosterlitz-Thouless
limit, while the condensate fraction approaches zero, as expected.Comment: 14 pages, 5 figures. Accepted for publication by Physical review
The critical temperature of a trapped, weakly interacting Bose gas
We report on measurements of the critical temperature of a harmonically
trapped, weakly interacting Bose gas as a function of atom number. Our results
exclude ideal-gas behavior by more than two standard deviations, and agree
quantitatively with mean-field theory. At our level of sensitivity, we find no
additional shift due to critical fluctuations. In the course of this
measurement, the onset of hydrodynamic expansion in the thermal component has
been observed. Our thermometry method takes this feature into account.Comment: version 2, 20 octobre 200
Anomalous fluctuations of the condensate in interacting Bose gases
We find that the fluctuations of the condensate in a weakly interacting Bose
gas confined in a box of volume follow the law . This anomalous behaviour arises from the occurrence of infrared
divergencies due to phonon excitations and holds also for strongly correlated
Bose superfluids. The analysis is extended to an interacting Bose gas confined
in a harmonic trap where the fluctuations are found to exhibit a similar
anomaly.Comment: 4 pages, RevTe
- …