128 research outputs found

    New Gauged N=8, D=4 Supergravities

    Full text link
    New gaugings of four dimensional N=8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N=2 supersymmetry and in which the gauge group is broken to SU(3)xU(1)2SU(3)xU(1)^2. Previous gaugings used the form of the ungauged action which is invariant under a rigid SL(8,R)SL(8,R) symmetry and promoted a 28-dimensional subgroup (SO(8),SO(p,8−p)SO(8),SO(p,8-p) or the non-semi-simple contraction CSO(p,q,8−p−q)CSO(p,q,8-p-q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU∗(8)SU^*(8) instead of SL(8,R)SL(8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU∗(8)SU^*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p,8−2p)CSO(2p,8-2p) groups, denoted CSO∗(2p,8−2p)CSO^*(2p,8-2p), and the new theories have a rigid SU(2) symmetry. The five dimensional gauged N=8 supergravities are dimensionally reduced to D=4. The D=5,SO(p,6−p)D=5,SO(p,6-p) gauge theories reduce, after a duality transformation, to the D=4,CSO(p,6−p,2)D=4,CSO(p,6-p,2) gauging while the SO∗(6)SO^*(6) gauge theory reduces to the D=4,CSO∗(6,2)D=4, CSO^*(6,2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualised to forms with different gauge groups.Comment: 33 pages. Reference adde

    Harmonic superpositions of non-extremal p-branes

    Get PDF
    The plot of allowed p and D values for p-brane solitons in D-dimensional supergravity is the same whether the solitons are extremal or non-extremal. One of the useful tools for relating different points on the plot is vertical dimensional reduction, which is possible if periodic arrays of p-brane solitons can be constructed. This is straightforward for extremal p-branes, since the no-force condition allows arbitrary multi-centre solutions to be constructed in terms of a general harmonic function on the transverse space. This has also been shown to be possible in the special case of non-extremal black holes in D=4 arrayed along an axis. In this paper, we extend previous results to include multi-scalar black holes, and dyonic black holes. We also consider their oxidation to higher dimensions, and we discuss general procedures for constructing the solutions, and studying their symmetries.Comment: Latex, 23 page

    Zero Modes for the D=11 Membrane and Five-Brane

    Get PDF
    There exist extremal p-brane solutions of D ⁣= ⁣11D\!=\!11 supergravity for p=2~and~5. In this paper we investigate the zero modes of the membrane and the five-brane solutions as a first step toward understanding the full quantum theory of these objects. It is found that both solutions possess the correct number of normalizable zero modes dictated by supersymmetry.Comment: Minor typos corrected, one reference added, agrees with published version. 9 RevTeX pages, 1 figure include

    Born-Infeld-Einstein Actions?

    Get PDF
    We present some obvious physical requirements on gravitational avatars of non-linear electrodynamics and illustrate them with explicit determinantal Born-Infeld-Einstein models. A related procedure, using compensating Weyl scalars, permits us to formulate conformally invariant versions of these systems as well.Comment: 7 page

    The Decay of Magnetic Fields in Kaluza-Klein Theory

    Get PDF
    Magnetic fields in five-dimensional Kaluza-Klein theory compactified on a circle correspond to ``twisted'' identifications of five dimensional Minkowski space. We show that a five dimensional generalisation of the Kerr solution can be analytically continued to construct an instanton that gives rise to two possible decay modes of a magnetic field. One decay mode is the generalisation of the ``bubble decay" of the Kaluza-Klein vacuum described by Witten. The other decay mode, rarer for weak fields, corresponds in four dimensions to the creation of monopole-anti-monopole pairs. An instanton for the latter process is already known and is given by the analytic continuation of the \KK\ Ernst metric, which we show is identical to the five dimensional Kerr solution. We use this fact to illuminate further properties of the decay process. It appears that fundamental fermions can eliminate the bubble decay of the magnetic field, while allowing the pair production of Kaluza-Klein monopoles.Comment: 25 pages, one figure. The discussion of fermions has been revised: We show how fundamental fermions can eliminate the bubble-type instability but still allow pair creation of monopole

    The many faces of OSp(1|32)

    Get PDF
    We show that the complete superalgebra of symmetries, including central charges, that underlies F-theories, M-theories and type II string theories in dimensions 12, 11 and 10 of various signatures correspond to rewriting of the same OSp(1|32) algebra in different covariant ways. One only has to distinguish the complex and the unique real algebra. We develop a common framework to discuss all signatures theories by starting from the complex form of OSp(1|32). Theories are distinguished by the choice of basis for this algebra. We formulate dimensional reductions and dualities as changes of basis of the algebra. A second ingredient is the choice of a real form corresponding to a specific signature. The existence of the real form of the algebra selects preferred spacetime signatures. In particular, we show how the real d=10 IIA and IIB superalgebras for various signatures are related by generalized T-duality transformations that not only involve spacelike but also timelike directions. A third essential ingredient is that the translation generator in one theory plays the role of a central charge operator in the other theory. The identification of the translation generator in these algebras leads to the star algebras of Hull, which are characterized by the fact that the positive definite energy operator is not part of the translation generators. We apply our results to discuss different T-dual pictures of the D-instanton solution of Euclidean IIB supergravity.Comment: 30 pages, Latex, using lscape.st

    Positive Mass Theorem for Black Holes in Einstein-Maxwell Axion-dilaton Gravity

    Full text link
    We presented the proof of the positive mass theorem for black holes in Einstein-Maxwell axion-dilaton gravity being the low-energy limit of the heterotic string theory. We show that the total mass of a spacetime containing a black hole is greater or equal to the square root of the sum of squares of the adequate dilaton-electric and dilaton-axion charges.Comment: latex file, to appear in Classical Quantum Gravit

    N=2 supergravity models with stable de Sitter vacua

    Get PDF
    In the present talk I shall review the construction of N=2 supergravity models exhibiting stable de Sitter vacua. These solutions represent the first instance of stable backgrounds with positive cosmological constant in the framework of extended supergravities (N >=2). After briefly reviewing the role of de Sitter space--times in inflationary cosmology, I shall describe the main ingredients which were necessary for the construction of gauged N=2 supergravity models admitting stable solutions of this kind.Comment: Prepared for Workshop on the Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions, Leuven, Belgium, September 13-19 200

    Black Hole Superpartners and Fixed Scalars

    Get PDF
    Some bosonic solutions of supergravities admit Killing spinors of unbroken supersymmetry. The anti-Killing spinors of broken supersymmetry can be used to generate the superpartners of stringy black holes. This has a consequent feedback on the metric and the graviphoton. We have found however that the fixed scalars for the black hole superpartners remain the same as for the original black holes. Possible phenomenological implications of this result are discussed.Comment: 6 pages, Late

    Classical and Quantum Analysis of Repulsive Singularities in Four Dimensional Extended Supergravity

    Get PDF
    Non--minimal repulsive singularities (``repulsons'') in extended supergravity theories are investigated. The short distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test--particle. Using a partial wave expansion it is shown that the particle gets totally reflected at the origin. A high frequency incoming particle undergoes a phase shift of π2\frac{\pi}{2}. However, the phase shift for a low--frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rhr_h turns out to be transparent for the scalar test--particle and the coordinate singularity at the origin serves as a repulsive barrier at which particles bounce off.Comment: 20 pages, 14 figure
    • 

    corecore