647 research outputs found

    Discovering Linear Models of Grid Workload

    Get PDF
    Despite extensive research focused on enabling QoS for grid users through economic and intelligent resource provisioning, no consensus has emerged on the most promising strategies. On top of intrinsically challenging problems, the complexity and size of data has so far drastically limited the number of comparative experiments. An alternative to experimenting on real, large, and complex data, is to look for well-founded and parsimonious representations. The goal of this paper is to answer a set of preliminary questions, which may help steering the design of those along feasible paths: is it possible to exhibit consistent models of the grid workload? If such models do exist, which classes of models are more appropriate, considering both simplicity and descriptive power? How can we actually discover such models? And finally, how can we assess the quality of these models on a statistically rigorous basis? Our main contributions are twofold. First we found that grid workload models can consistently be discovered from the real data, and that limiting the range of models to piecewise linear time series models is sufficiently powerful. Second, we presents a bootstrapping strategy for building more robust models from the limited samples at hand. This study is based on exhaustive information representative of a significant fraction of e-science computing activity in Europe

    Toward Behavioral Modeling of a Grid System: Mining the Logging and Bookkeeping files

    Get PDF
    International audienceGrid systems are complex heterogeneous systems, and their modeling constitutes a highly challenging goal. This paper is interested in modeling the jobs handled by the EGEE grid, by mining the Logging and Bookkeeping files. The goal is to discover meaningful job clusters, going beyond the coarse categories of ”successfully terminated jobs” and ”other jobs”. The presented approach is a threestep process: i) Data slicing is used to alleviate the job heterogeneity and afford discriminant learning; ii) Constructive induction proceeds by learning discriminant hypotheses from each data slice; iii) Finally, double clustering is used on the representation built by constructive induction; the clusters are fully validated after the stability criteria proposed by Meila (2006). Lastly, the job clusters are submitted to the experts and some meaningful interpretations are foun

    Predicting Bounds on Queuing Delay in the EGEE grid

    Get PDF
    International audiencePredicting the performance of schedulers is a notoriously difficult task. As a consequence, grid users might be tempted to work around the standard grid middleware by designing specific strategies, which would be counterproductive if generally adopted. On the other hand, Machine Learning has been successfully applied to performance prediction in distributed and shared environments. This paper reports on experiments on predicting the basic parameters of scheduling in the EGEE framework

    Discovering Piecewise Linear Models of Grid Workload

    Get PDF
    International audienceDespite extensive research focused on enabling QoS for grid users through economic and intelligent resource provisioning, no consensus has emerged on the most promising strategies. On top of intrinsically challenging problems, the complexity and size of data has so far drastically limited the number of comparative experiments. An alternative to experimenting on real, large, and complex data, is to look for well-founded and parsimonious representations. This study is based on exhaustive information about the gLite-monitored jobs from the EGEE grid, representative of a significant fraction of e-science computing activity in Europe. Our main contributions are twofold. First we found that workload models for this grid can consistently be discovered from the real data, and that limiting the range of models to piecewise linear time series models is sufficiently powerful. Second, we present a bootstrapping strategy for building more robust models from the limited samples at hand

    Grid Scheduling for Interactive Analysis

    Get PDF
    Grids are facing the challenge of moving from batch systems to interactive computing. In the 70s, standalone computer systems have met this challenge, and this was the starting point of pervasive computing. Meeting this challenge will allow grids to be the infrastructure for ambient intelligence and ubiquitous computing. This paper shows that EGEE, the largest world grid, does not yet provide the services required for interactive computing, but that it is amenable to this evolution through relatively modest middleware evolution. A case study on medical image analysis exemplifies the particular needs of ultra-short jobs

    Utility-based Reinforcement Learning for Reactive Grids

    Get PDF
    International audienceLarge scale production grids are an important case for autonomic computing. They follow a mutualization paradigm: decision-making (human or automatic) is distributed and largely independent, and, at the same time, it must implement the highlevel goals of the grid management. This paper deals with the scheduling problem with two partially conflicting goals: fairshare and Quality of Service (QoS). Fair sharing is a wellknown issue motivated by return on investment for participating institutions. Differentiated QoS has emerged as an important and unexpected requirement in the current usage of production grids. In the framework of the EGEE grid (one of the largest existing grids), applications from diverse scientific communities require a pseudo-interactive response time. More generally, seamless integration of the grid power into everyday use calls for unplanned and interactive access to grid resources, which defines reactive grids. The major result of this paper is that the combination of utility functions and reinforcement learning (RL) provides a general and efficient method for dynamically allocating grid resources in order to satisfy both end users with differentiated requirements and participating institutions. Combining RL methods and utility functions for resource allocation was pioneered by Tesauro and Vengerov. While the application contexts are different, the resource allocation issues are very similar. The main difference in our work is that we consider a multi-criteria optimization problem that includes a fair-share objective. A first contribution of our work is the definition of a set of variables describing states and actions that allows us to formulate the grid scheduling problem as a continuous action-state space reinforcement learning problem. To capture the immediate goals of end users and the long-term objectives of administrators, we propose automatically derived utility functions. Finally, our experimental results on a synthetic workload and a real EGEE trace show that RL clearly outperforms the classical schedulers, so it is a realistic alternative to empirical scheduler design

    Multi-objective reinforcement learning for responsive grids

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceGrids organize resource sharing, a fundamental requirement of large scientific collaborations. Seamless integration of grids into everyday use requires responsiveness, which can be provided by elastic Clouds, in the Infrastructure as a Service (IaaS) paradigm. This paper proposes a model-free resource provisioning strategy supporting both requirements. Provisioning is modeled as a continuous action-state space, multi-objective reinforcement learning (RL) problem, under realistic hypotheses; simple utility functions capture the high level goals of users, administrators, and shareholders. The model-free approach falls under the general program of autonomic computing, where the incremental learning of the value function associated with the RL model provides the so-called feedback loop. The RL model includes an approximation of the value function through an Echo State Network. Experimental validation on a real data-set from the EGEE grid shows that introducing a moderate level of elasticity is critical to ensure a high level of user satisfaction

    La surveillance efficace de bout-à-bout pour la gestion des pannes dans les systèmes distribués

    Get PDF
    Dans cette thèse, nous présentons notre travail sur la gestion des pannes dans les systèmes distribués, avec comme motivation principale le suivi de fautes et de changements brusques dans de grands systèmes informatiques comme la grille et le cloud.Au lieu de construire une connaissance complète a priori du logiciel et des infrastructures matérielles comme dans les méthodes traditionnelles de détection ou de diagnostic, nous proposons d'utiliser des techniques spécifiques pour effectuer une surveillance de bout en bout dans des systèmes de grande envergure, en laissant les détails inaccessibles des composants impliqués dans une boîte noire.Pour la surveillance de pannes d'un système distribué, nous modélisons tout d'abord cette application basée sur des sondes comme une tâche de prédiction statique de collaboration (CP), et démontrons expérimentalement l'efficacité des méthodes de CP en utilisant une méthode de la max margin matrice factorisation. Nous introduisons en outre l apprentissage actif dans le cadre de CP et exposons son avantage essentiel dans le traitement de données très déséquilibrées, ce qui est particulièrement utile pour identifier la class de classe de défaut de la minorité.Nous étendons ensuite la surveillance statique de défection au cas séquentiel en proposant la méthode de factorisation séquentielle de matrice (SMF). La SMF prend une séquence de matrices partiellement observées en entrée, et produit des prédictions comportant des informations à la fois sur les fenêtres temporelles actuelle et passé. L apprentissage actif est également utilisé pour la SMF, de sorte que les données très déséquilibrées peuvent être traitées correctement. En plus des méthodes séquentielles, une action de lissage pris sur la séquence d'estimation s'est avérée être une astuce pratique utile pour améliorer la performance de la prédiction séquentielle.Du fait que l'hypothèse de stationnarité utilisée dans le surveillance statique et séquentielle devient irréaliste en présence de changements brusques, nous proposons un framework en ligne semi-supervisé de détection de changement (SSOCD) qui permette de détecter des changements intentionnels dans les données de séries temporelles. De cette manière, le modèle statique du système peut être recalculé une fois un changement brusque est détecté. Dans SSOCD, un procédé hors ligne non supervisé est proposé pour analyser un échantillon des séries de données. Les points de changement ainsi détectés sont utilisés pour entraîner un modèle en ligne supervisé, qui fournit une décision en ligne concernant la détection de changement à parti de la séquence de données en entrée. Les méthodes de détection de changements de l état de l art sont utilisées pour démontrer l'utilité de ce framework.Tous les travaux présentés sont vérifiés sur des ensembles de données du monde réel. Plus précisément, les expériences de surveillance de panne sont effectuées sur un ensemble de données recueillies auprès de l infrastructure de grille Biomed faisant partie de l European Grid Initiative et le framework de détection de changement brusque est vérifié sur un ensemble de données concernant le changement de performance d'un site en ligne ayant un fort trafic.In this dissertation, we present our work on fault management in distributed systems, with motivating application roots in monitoring fault and abrupt change of large computing systems like the grid and the cloud. Instead of building a complete a priori knowledge of the software and hardware infrastructures as in conventional detection or diagnosis methods, we propose to use appropriate techniques to perform end-to-end monitoring for such large scale systems, leaving the inaccessible details of involved components in a black box.For the fault monitoring of a distributed system, we first model this probe-based application as a static collaborative prediction (CP) task, and experimentally demonstrate the effectiveness of CP methods by using the max margin matrix factorization method. We further introduce active learning to the CP framework and exhibit its critical advantage in dealing with highly imbalanced data, which is specially useful for identifying the minority fault class.Further we extend the static fault monitoring to the sequential case by proposing the sequential matrix factorization (SMF) method. SMF takes a sequence of partially observed matrices as input, and produces predictions with information both from the current and history time windows. Active learning is also employed to SMF, such that the highly imbalanced data can be coped with properly. In addition to the sequential methods, a smoothing action taken on the estimation sequence has shown to be a practically useful trick for enhancing sequential prediction performance.Since the stationary assumption employed in the static and sequential fault monitoring becomes unrealistic in the presence of abrupt changes, we propose a semi-supervised online change detection (SSOCD) framework to detect intended changes in time series data. In this way, the static model of the system can be recomputed once an abrupt change is detected. In SSOCD, an unsupervised offline method is proposed to analyze a sample data series. The change points thus detected are used to train a supervised online model, which gives online decision about whether there is a change presented in the arriving data sequence. State-of-the-art change detection methods are employed to demonstrate the usefulness of the framework.All presented work is verified on real-world datasets. Specifically, the fault monitoring experiments are conducted on a dataset collected from the Biomed grid infrastructure within the European Grid Initiative, and the abrupt change detection framework is verified on a dataset concerning the performance change of an online site with large amount of traffic.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    The Green Computing Observatory: a data curation approach for green IT

    Get PDF
    International audienceThe first barrier to improved energy efficiency is the difficulty of collecting data on the energy consumption of individual components of data centers, and the lack of overall data collection. GCO collects monitoring data on energy consumption of a large computing center, and publish them through the Grid Observatory. These data include the detailed monitoring of the processors and motherboards, as well as the global site information, such as overall consumption and overall cooling. A second barrier is making the collected data usable. The difficulty is to make the data readily consistent and complete, as well as understandable for further exploitation. For this purpose, GCO opts for an ontological approach in order to rigorously define the semantics of the data (what is measured) and the context of their production (how are they acquired and/or calculated). The Green Computing Observatory (GCO) addresses the previous issues within the framework of a production infrastructure dedicated to e-science, providing a unique facility for the Computer Science and Engineering community. The overall goal is to create a full-fledged data curation process. This paper reports on the first achievements, specifically acquisition and ontology
    corecore