767 research outputs found
Exploring Latent Semantic Factors to Find Useful Product Reviews
Online reviews provided by consumers are a valuable asset for e-Commerce
platforms, influencing potential consumers in making purchasing decisions.
However, these reviews are of varying quality, with the useful ones buried deep
within a heap of non-informative reviews. In this work, we attempt to
automatically identify review quality in terms of its helpfulness to the end
consumers. In contrast to previous works in this domain exploiting a variety of
syntactic and community-level features, we delve deep into the semantics of
reviews as to what makes them useful, providing interpretable explanation for
the same. We identify a set of consistency and semantic factors, all from the
text, ratings, and timestamps of user-generated reviews, making our approach
generalizable across all communities and domains. We explore review semantics
in terms of several latent factors like the expertise of its author, his
judgment about the fine-grained facets of the underlying product, and his
writing style. These are cast into a Hidden Markov Model -- Latent Dirichlet
Allocation (HMM-LDA) based model to jointly infer: (i) reviewer expertise, (ii)
item facets, and (iii) review helpfulness. Large-scale experiments on five
real-world datasets from Amazon show significant improvement over
state-of-the-art baselines in predicting and ranking useful reviews
Equity of Attention: Amortizing Individual Fairness in Rankings
Rankings of people and items are at the heart of selection-making,
match-making, and recommender systems, ranging from employment sites to sharing
economy platforms. As ranking positions influence the amount of attention the
ranked subjects receive, biases in rankings can lead to unfair distribution of
opportunities and resources, such as jobs or income.
This paper proposes new measures and mechanisms to quantify and mitigate
unfairness from a bias inherent to all rankings, namely, the position bias,
which leads to disproportionately less attention being paid to low-ranked
subjects. Our approach differs from recent fair ranking approaches in two
important ways. First, existing works measure unfairness at the level of
subject groups while our measures capture unfairness at the level of individual
subjects, and as such subsume group unfairness. Second, as no single ranking
can achieve individual attention fairness, we propose a novel mechanism that
achieves amortized fairness, where attention accumulated across a series of
rankings is proportional to accumulated relevance.
We formulate the challenge of achieving amortized individual fairness subject
to constraints on ranking quality as an online optimization problem and show
that it can be solved as an integer linear program. Our experimental evaluation
reveals that unfair attention distribution in rankings can be substantial, and
demonstrates that our method can improve individual fairness while retaining
high ranking quality.Comment: Accepted to SIGIR 201
Listening between the Lines: Learning Personal Attributes from Conversations
Open-domain dialogue agents must be able to converse about many topics while
incorporating knowledge about the user into the conversation. In this work we
address the acquisition of such knowledge, for personalization in downstream
Web applications, by extracting personal attributes from conversations. This
problem is more challenging than the established task of information extraction
from scientific publications or Wikipedia articles, because dialogues often
give merely implicit cues about the speaker. We propose methods for inferring
personal attributes, such as profession, age or family status, from
conversations using deep learning. Specifically, we propose several Hidden
Attribute Models, which are neural networks leveraging attention mechanisms and
embeddings. Our methods are trained on a per-predicate basis to output rankings
of object values for a given subject-predicate combination (e.g., ranking the
doctor and nurse professions high when speakers talk about patients, emergency
rooms, etc). Experiments with various conversational texts including Reddit
discussions, movie scripts and a collection of crowdsourced personal dialogues
demonstrate the viability of our methods and their superior performance
compared to state-of-the-art baselines.Comment: published in WWW'1
Cardinal Virtues: Extracting Relation Cardinalities from Text
Information extraction (IE) from text has largely focused on relations
between individual entities, such as who has won which award. However, some
facts are never fully mentioned, and no IE method has perfect recall. Thus, it
is beneficial to also tap contents about the cardinalities of these relations,
for example, how many awards someone has won. We introduce this novel problem
of extracting cardinalities and discusses the specific challenges that set it
apart from standard IE. We present a distant supervision method using
conditional random fields. A preliminary evaluation results in precision
between 3% and 55%, depending on the difficulty of relations.Comment: 5 pages, ACL 2017 (short paper
ComQA: A Community-sourced Dataset for Complex Factoid Question Answering with Paraphrase Clusters
To bridge the gap between the capabilities of the state-of-the-art in factoid
question answering (QA) and what users ask, we need large datasets of real user
questions that capture the various question phenomena users are interested in,
and the diverse ways in which these questions are formulated. We introduce
ComQA, a large dataset of real user questions that exhibit different
challenging aspects such as compositionality, temporal reasoning, and
comparisons. ComQA questions come from the WikiAnswers community QA platform,
which typically contains questions that are not satisfactorily answerable by
existing search engine technology. Through a large crowdsourcing effort, we
clean the question dataset, group questions into paraphrase clusters, and
annotate clusters with their answers. ComQA contains 11,214 questions grouped
into 4,834 paraphrase clusters. We detail the process of constructing ComQA,
including the measures taken to ensure its high quality while making effective
use of crowdsourcing. We also present an extensive analysis of the dataset and
the results achieved by state-of-the-art systems on ComQA, demonstrating that
our dataset can be a driver of future research on QA.Comment: 11 pages, NAACL 201
Item Recommendation with Evolving User Preferences and Experience
Current recommender systems exploit user and item similarities by
collaborative filtering. Some advanced methods also consider the temporal
evolution of item ratings as a global background process. However, all prior
methods disregard the individual evolution of a user's experience level and how
this is expressed in the user's writing in a review community. In this paper,
we model the joint evolution of user experience, interest in specific item
facets, writing style, and rating behavior. This way we can generate individual
recommendations that take into account the user's maturity level (e.g.,
recommending art movies rather than blockbusters for a cinematography expert).
As only item ratings and review texts are observables, we capture the user's
experience and interests in a latent model learned from her reviews, vocabulary
and writing style. We develop a generative HMM-LDA model to trace user
evolution, where the Hidden Markov Model (HMM) traces her latent experience
progressing over time -- with solely user reviews and ratings as observables
over time. The facets of a user's interest are drawn from a Latent Dirichlet
Allocation (LDA) model derived from her reviews, as a function of her (again
latent) experience level. In experiments with five real-world datasets, we show
that our model improves the rating prediction over state-of-the-art baselines,
by a substantial margin. We also show, in a use-case study, that our model
performs well in the assessment of user experience levels
- …
