767 research outputs found

    Exploring Latent Semantic Factors to Find Useful Product Reviews

    Full text link
    Online reviews provided by consumers are a valuable asset for e-Commerce platforms, influencing potential consumers in making purchasing decisions. However, these reviews are of varying quality, with the useful ones buried deep within a heap of non-informative reviews. In this work, we attempt to automatically identify review quality in terms of its helpfulness to the end consumers. In contrast to previous works in this domain exploiting a variety of syntactic and community-level features, we delve deep into the semantics of reviews as to what makes them useful, providing interpretable explanation for the same. We identify a set of consistency and semantic factors, all from the text, ratings, and timestamps of user-generated reviews, making our approach generalizable across all communities and domains. We explore review semantics in terms of several latent factors like the expertise of its author, his judgment about the fine-grained facets of the underlying product, and his writing style. These are cast into a Hidden Markov Model -- Latent Dirichlet Allocation (HMM-LDA) based model to jointly infer: (i) reviewer expertise, (ii) item facets, and (iii) review helpfulness. Large-scale experiments on five real-world datasets from Amazon show significant improvement over state-of-the-art baselines in predicting and ranking useful reviews

    Equity of Attention: Amortizing Individual Fairness in Rankings

    Get PDF
    Rankings of people and items are at the heart of selection-making, match-making, and recommender systems, ranging from employment sites to sharing economy platforms. As ranking positions influence the amount of attention the ranked subjects receive, biases in rankings can lead to unfair distribution of opportunities and resources, such as jobs or income. This paper proposes new measures and mechanisms to quantify and mitigate unfairness from a bias inherent to all rankings, namely, the position bias, which leads to disproportionately less attention being paid to low-ranked subjects. Our approach differs from recent fair ranking approaches in two important ways. First, existing works measure unfairness at the level of subject groups while our measures capture unfairness at the level of individual subjects, and as such subsume group unfairness. Second, as no single ranking can achieve individual attention fairness, we propose a novel mechanism that achieves amortized fairness, where attention accumulated across a series of rankings is proportional to accumulated relevance. We formulate the challenge of achieving amortized individual fairness subject to constraints on ranking quality as an online optimization problem and show that it can be solved as an integer linear program. Our experimental evaluation reveals that unfair attention distribution in rankings can be substantial, and demonstrates that our method can improve individual fairness while retaining high ranking quality.Comment: Accepted to SIGIR 201

    Listening between the Lines: Learning Personal Attributes from Conversations

    Full text link
    Open-domain dialogue agents must be able to converse about many topics while incorporating knowledge about the user into the conversation. In this work we address the acquisition of such knowledge, for personalization in downstream Web applications, by extracting personal attributes from conversations. This problem is more challenging than the established task of information extraction from scientific publications or Wikipedia articles, because dialogues often give merely implicit cues about the speaker. We propose methods for inferring personal attributes, such as profession, age or family status, from conversations using deep learning. Specifically, we propose several Hidden Attribute Models, which are neural networks leveraging attention mechanisms and embeddings. Our methods are trained on a per-predicate basis to output rankings of object values for a given subject-predicate combination (e.g., ranking the doctor and nurse professions high when speakers talk about patients, emergency rooms, etc). Experiments with various conversational texts including Reddit discussions, movie scripts and a collection of crowdsourced personal dialogues demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.Comment: published in WWW'1

    Cardinal Virtues: Extracting Relation Cardinalities from Text

    Full text link
    Information extraction (IE) from text has largely focused on relations between individual entities, such as who has won which award. However, some facts are never fully mentioned, and no IE method has perfect recall. Thus, it is beneficial to also tap contents about the cardinalities of these relations, for example, how many awards someone has won. We introduce this novel problem of extracting cardinalities and discusses the specific challenges that set it apart from standard IE. We present a distant supervision method using conditional random fields. A preliminary evaluation results in precision between 3% and 55%, depending on the difficulty of relations.Comment: 5 pages, ACL 2017 (short paper

    ComQA: A Community-sourced Dataset for Complex Factoid Question Answering with Paraphrase Clusters

    Get PDF
    To bridge the gap between the capabilities of the state-of-the-art in factoid question answering (QA) and what users ask, we need large datasets of real user questions that capture the various question phenomena users are interested in, and the diverse ways in which these questions are formulated. We introduce ComQA, a large dataset of real user questions that exhibit different challenging aspects such as compositionality, temporal reasoning, and comparisons. ComQA questions come from the WikiAnswers community QA platform, which typically contains questions that are not satisfactorily answerable by existing search engine technology. Through a large crowdsourcing effort, we clean the question dataset, group questions into paraphrase clusters, and annotate clusters with their answers. ComQA contains 11,214 questions grouped into 4,834 paraphrase clusters. We detail the process of constructing ComQA, including the measures taken to ensure its high quality while making effective use of crowdsourcing. We also present an extensive analysis of the dataset and the results achieved by state-of-the-art systems on ComQA, demonstrating that our dataset can be a driver of future research on QA.Comment: 11 pages, NAACL 201

    Item Recommendation with Evolving User Preferences and Experience

    Full text link
    Current recommender systems exploit user and item similarities by collaborative filtering. Some advanced methods also consider the temporal evolution of item ratings as a global background process. However, all prior methods disregard the individual evolution of a user's experience level and how this is expressed in the user's writing in a review community. In this paper, we model the joint evolution of user experience, interest in specific item facets, writing style, and rating behavior. This way we can generate individual recommendations that take into account the user's maturity level (e.g., recommending art movies rather than blockbusters for a cinematography expert). As only item ratings and review texts are observables, we capture the user's experience and interests in a latent model learned from her reviews, vocabulary and writing style. We develop a generative HMM-LDA model to trace user evolution, where the Hidden Markov Model (HMM) traces her latent experience progressing over time -- with solely user reviews and ratings as observables over time. The facets of a user's interest are drawn from a Latent Dirichlet Allocation (LDA) model derived from her reviews, as a function of her (again latent) experience level. In experiments with five real-world datasets, we show that our model improves the rating prediction over state-of-the-art baselines, by a substantial margin. We also show, in a use-case study, that our model performs well in the assessment of user experience levels
    corecore