8,462 research outputs found
Microdetermination of urea in urine using p-dimethylaminobenzaldehyde /PDAB/
Adaptation of the p-dimethylaminobenzaldehyde method for determining urea concentration in urine is an improved micromechanical method. Accuracy and precision are satisfactory. This method avoids extra steps of deproteinizing or removing normal urinary chromogens
Flash of photons from the early stage of heavy-ion collisions
The dynamics of partonic cascades may be an important aspect for particle
production in relativistic collisions of nuclei at CERN SPS and BNL RHIC
energies. Within the Parton-Cascade Model, we estimate the production of single
photons from such cascades due to scattering of quarks and gluons q g -> q
gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from
electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter
QED branching process plays the dominant role for photon production, similarly
as the QCD branchings q -> q g and g -> g g play a crucial role for parton
multiplication. We conclude therefore that photons accompanying the parton
cascade evolution during the early stage of heavy-ion collisions shed light on
the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure
The European Commission’s public consultation on the role of publishers in the copyright value chain: a response by the European Copyright Society
No abstract available
Intelligent redundant actuation system requirements and preliminary system design
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed
Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?
We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the
earlier developed and recently refined parton-cascade/cluster-hadronization
model and its Monte Carlo implementation. This space-time model involves the
dynamical interplay of perturbative QCD parton production and evolution, with
non-perturbative parton-cluster formation and hadron production through cluster
decays. Using computer simulations, we are able to follow the entwined
time-evolution of parton and hadron degrees of freedom in both position and
momentum space, from the instant of nuclear overlap to the final yield of
particles. We present and discuss results for the multiplicity distributions,
which agree well with the measured data from the CERN SPS, including those for
K mesons. The transverse momentum distributions of the produced hadrons are
also found to be in good agreement with the preliminary data measured by the
NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN
SPS. The analysis of the time evolution of transverse energy deposited in the
collision zone and the energy density suggests an existence of partonic matter
for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure
Deep Convolutional Neural Networks as strong gravitational lens detectors
Future large-scale surveys with high resolution imaging will provide us with
a few new strong galaxy-scale lenses. These strong lensing systems
however will be contained in large data amounts which are beyond the capacity
of human experts to visually classify in a unbiased way. We present a new
strong gravitational lens finder based on convolutional neural networks (CNNs).
The method was applied to the Strong Lensing challenge organised by the Bologna
Lens Factory. It achieved first and third place respectively on the space-based
data-set and the ground-based data-set. The goal was to find a fully automated
lens finder for ground-based and space-based surveys which minimizes human
inspect. We compare the results of our CNN architecture and three new
variations ("invariant" "views" and "residual") on the simulated data of the
challenge. Each method has been trained separately 5 times on 17 000 simulated
images, cross-validated using 3 000 images and then applied to a 100 000 image
test set. We used two different metrics for evaluation, the area under the
receiver operating characteristic curve (AUC) score and the recall with no
false positive (). For ground based data our
best method achieved an AUC score of and a
of . For space-based data our best
method achieved an AUC score of and a
of . On space-based data adding dihedral invariance to the CNN
architecture diminished the overall score but achieved a higher no
contamination recall. We found that using committees of 5 CNNs produce the best
recall at zero contamination and consistenly score better AUC than a single
CNN. We found that for every variation of our CNN lensfinder, we achieve AUC
scores close to within .Comment: 9 pages, accepted to A&
Low Dirac Eigenmodes and the Topological and Chiral Structure of the QCD Vacuum
Several lattice calculations which probe the chiral and topological structure
of QCD are discussed. The results focus attention on the low-lying eigenmodes
of the Dirac operator in typical gauge field configurations.Comment: Talk presented at the DPF2000 Conferenc
Isoscalar-isovector mass splittings in excited mesons
Mass splittings between the isovector and isoscalar members of meson nonets
arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka
rule.
Using a model for these loop processes which works qualitatively well in the
established nonets, I tabulate predictions for the splittings and associated
isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and
explain some of their systematic features.
The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure.
CMU-HEP93-23/DOE-ER-40682-4
- …