7 research outputs found

    Three dimensional multi-pass repair weld simulations

    Get PDF
    Full 3-dimensional (3-D) simulation of multi-pass weld repairs is now feasible and practical given the development of improved analysis tools and significantly greater computer power. This paper presents residual stress results from 3-D finite element (FE) analyses simulating a long (arc length of 62°) and a short (arc length of 20°) repair to a girth weld in a 19.6 mm thick, 432 mm outer diameter cylindrical test component. Sensitivity studies are used to illustrate the importance of weld bead inter-pass temperature assumptions and to show where model symmetry can be used to reduce the analysis size. The predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of the test component repairs. A good overall agreement is achieved between neutron diffraction and deep hole drilling measurements and the prediction at the mid-length position of the short repair. These results demonstrate that a coarse 3-D FE model, using a ‘block-dumped’ weld bead deposition approach (rather than progressively depositing weld metal), can accurately capture the important components of a short repair weld residual stress field. However, comparisons of measured with predicted residual stress at mid-length and stop-end positions in the long repair are less satisfactory implying some shortcomings in the FE modelling approach that warrant further investigation

    Sensitizing Curium Luminescence through an Antenna Protein To Investigate Biological Actinide Transport Mechanisms

    No full text
    Worldwide stocks of actinides and lanthanide fission products produced through conventional nuclear spent fuel are increasing continuously, resulting in a growing risk of environmental and human exposure to these toxic radioactive metal ions. Understanding the biomolecular pathways involved in mammalian uptake, transport and storage of these f-elements is crucial to the development of new decontamination strategies and could also be beneficial to the design of new containment and separation processes. To start unraveling these pathways, our approach takes advantage of the unique spectroscopic properties of trivalent curium. We clearly show that the human iron transporter transferrin acts as an antenna that sensitizes curium luminescence through intramolecular energy transfer. This behavior has been used to describe the coordination of curium within the two binding sites of the protein and to investigate the recognition of curium–transferrin complexes by the cognate transferrin receptor. In addition to providing the first protein–curium spectroscopic characterization, these studies prove that transferrin receptor-mediated endocytosis is a viable mechanism of intracellular entry for trivalent actinides such as curium and provide a new tool utilizing the specific luminescence of curium for the determination of other biological actinide transport mechanisms

    Impact of a Biological Chelator, Lanmodulin, on Minor Actinide Aqueous Speciation and Transport in the Environment

    No full text
    Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature’s most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM’s aqueous complexes with Am­(III) and Cm­(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am­(III) to these minerals is strongly impacted by LanM, while Np­(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am­(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np­(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites

    Contrasting Trivalent Lanthanide and Actinide Complexation by Polyoxometalates via Solution-State NMR

    No full text
    Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium–POM and curium–POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM–NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397– was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4– and [MIII(PW11O39)2]11–. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM–NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides

    Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements

    No full text
    The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy

    Characterization of Americium and Curium Complexes with the Protein Lanmodulin: A Potential Macromolecular Mechanism for Actinide Mobility in the Environment

    No full text
    Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein’s high selectivity over 243Am’s daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations

    Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator–Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms

    No full text
    Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes <sup>225</sup>Ac and <sup>227</sup>Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI­(CAM) bound to the mammalian protein siderocalin. Respective stability constants log β<sub>110</sub> = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the Eu<sup>III</sup> (a lanthanide surrogate for Ac<sup>III</sup>), Zr<sup>IV</sup>, and Th<sup>IV</sup> complexes of 3,4,3-LI­(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal–ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with Zr<sup>IV</sup> and Th<sup>IV</sup>. Finally, differences in biodistribution profiles between free and siderocalin-bound <sup>238</sup>Pu<sup>IV</sup>-3,4,3-LI­(CAM) complexes confirm <i>in vivo</i> stability of the protein construct. The siderocalin:3,4,3-LI­(CAM) assembly can therefore serve as a “lock” to consolidate binding to the therapeutic <sup>225</sup>Ac and <sup>227</sup>Th isotopes or to the positron emission tomography emitter <sup>89</sup>Zr, independent of metal valence state
    corecore