34 research outputs found
Empirical Analysis of the User Needs and the Business Models in the Norwegian Charging Infrastructure Ecosystem
Figenbaum, E.; Wangsness, P.B.; Amundsen, A.H.; Milch, V. Empirical Analysis of the User Needs and the Business Models in the Norwegian Charging Infrastructure Ecosystem. World Electr. Veh. J. 2022, 13, 185. https://doi.org/10.3390/wevj13100185The Norwegian charging infrastructure ecosystem was investigated from a user perspective by (1) developing knowledge of end-user experiences with public charging, (2) mapping BEV owners and future owner’s user-friendliness needs and the extent to which these needs are met, (3) pointing at potential user-friendliness improvements, (4) mapping the charging infrastructure ecosystem and business models, and (5) developing scenarios for the future system development and the impact on charging infrastructure user-friendliness. The article draws on the literature, a BEV (battery electric vehicle) and ICEV (internal combustion engine vehicle) owner survey, 15 BEV owner interviews, 21 charging infrastructure actor interviews, and open information sources on the charger actors. The unregulated charging system evolved into a complex web of actors that developed their own charging networks following their individually sensible business models, which in sum led to serious user-friendliness issues. To gain access to all chargers, users need to interact with up to 20–30 apps and 13 payment systems, which comes on top of different plug types, power levels, and charger interfaces. Some actors support roaming, while others oppose it. OEMs want users to interface with chargers through the navigation system. In the future, the system will become even more complex and less user friendly as more actors join unless, e.g., consolidation, regulation, or independent network orchestrators reduce the complexity.publishedVersio
Estimating stocks and flows of electric passenger vehicle batteries in the Norwegian fleet from 2011 to 2030
Retired passenger battery electric vehicles (BEVs) are expected to generate significant volumes of lithium-ion batteries (LIBs), opening business opportunities for second life and recycling. In order to evaluate these, robust estimates of the future quantity and composition of LIBs are imperative. Here, we analyzed BEV fate in the Norwegian passenger vehicle fleet and estimated the corresponding battery capacity in retired vehicles from 2011 to 2030, using a stock-flow vehicle cohort model linked to analysis of the battery types and sizes contained in different BEVs. Results based on this combination of modeled and highly disaggregated technical data show that (i) the LIB energy capacity available for second use or recycling from end-of-life vehicles is expected to reach 0.6 GWh in 2025 and 2.1 GWh in 2030 (not accounting for any losses); (ii) most LIBs are currently contained within the weight segment 1500–1599 kg followed by 2000+ kg; (iii) highest sales currently exist for BEVs containing lithium nickel manganese cobalt oxide (NMC) batteries; and (iv) lithium nickel cobalt aluminum oxide batteries initially constitute the largest overall capacity in retired vehicles, but will later be surpassed by NMCs. The results demonstrate rapidly growing opportunities for businesses to make use of retired batteries and a necessity to adapt to changing battery types and sizes.publishedVersio
Recommended from our members
Exploring the Role of Cities in Electrifying Passenger Transportation
Key Takeaways1. The electrification of passenger vehicles should be one part of a city’s transportation plan. Shifting from internal combustion engine vehicles to plug-in electric vehicles (PEVs) can improve urban air quality, reduce greenhouse gas emissions, and reduce energy consumption.2. Recent studies show that electric vehicle awareness is low even in mature markets; cities should promote electric vehicles to residents by leveraging existing promotional campaigns.3. Various financial and non-financial incentives can effectively encourage electric vehicle uptake, including: free, discounted, or preferential-location parking; free or reduced road and bridge tolls; and allowing electric vehicles to drive in bus or carpool lanes.4. Several cities are restricting or planning to restrict the access that internal combustion engine vehicles (ICEVs) have to certain areas. If these restrictions apply to most (or all) passenger ICEVs, they can promote PEV purchase and use in cities.5. Infrastructure development in cities should follow the same fundamental approach as that used outside of cities. The priority should be ensuring that PEV owners and prospective PEV buyers have access to charging at or near home. Workplace and public charging should be developed for those who cannot access charging at or near home.6. Cities should be strategic in their approach, first identifying the goals they want to achieve, and then exploring what steps they can take to meet these goals. The steps available will likely differ between cities due to the different ways in which roads, parking, and any other vehicle infrastructure is governed
Increasing the competitiveness of e-vehicles in Europe
Introduction
This paper is concerned with incentives for the take-up and use of e-vehicles that are in place in different European countries. Especially, it analyses Norway and Austria, in order to establish and understand factors influencing the competitiveness of e-vehicles and potential market penetration. Norway currently enjoys the world’s largest take-up of electric cars per capita, achieved through an extensive package of incentives. Austria has used the concept of Model Regions with government support to stimulate market introduction. So far, this has been a less effective approach.
Methods
The paper brings in and combine analyses of national travel survey data and web surveys to e-vehicle owners and non-e-vehicle owners. It considers socio-economic factors including convenience and time savings due to e-vehicle policies.
Results
Analysing national travel surveys, we find a considerable potential for e-vehicles based on people’s everyday travel. Social networks play a crucial role in spreading knowledge about this relatively new technology. The take-up of battery electric vehicles correlates relatively closely with the user value of e-vehicle incentives. The fiscal effects of e-vehicle incentives are non-trivial – especially in the longer run. The cost of lifting a new technology into the market by means of government incentives is significant. We point to the importance of a strategy for the gradual phasing out of e-vehicle policies in countries with large incentives when the cost of vehicles goes down and the technology improves.
Conclusions
Successful market uptake and expansion of electric vehicles requires massive, expensive and combined policies. Central government backing, long term commitment and market-oriented incentives help reduce the perceived risk for market players like car importers and allow the e-vehicle market to thrive. For countries with low e-vehicle market shares the potential is promising. Battery electric vehicles are already a real option for the majority of peoples’ everyday trips and trip chains. However, their relative disadvantages must be compensated by means of incentives – at least in the initial market launch phase. Diffusion mechanisms play a sizeable role. The lack of knowledge in the population at large must be addressed
Recommended from our members
Exploring the Role of Plug-In Hybrid Electric Vehicles in Electrifying Passenger Transportation
Key Takeaways1. Plug-in hybrid electric vehicles (PHEVs) have an important role in the electrifi cation of passenger transportation. Long-range PHEVs not only are a transitional technology. They also are an enabling technology that can encourage more consumers to adopt electric vehicles.2. The electric range of PHEVs has a signifi cant impact on electric vehicle miles traveled. PHEVs with electric range of at least 60km (37 miles (EPA Range)) have a similar ability to electrify travel as short-range battery electric vehicles (BEVs).3. Assuming the goal of policymakers is to increase electric vehicle miles traveled, policy support should correspond directly to electric driving range of both PHEVs and BEVs. Short-range PHEVs should receive less policy support; long-range PHEVs and BEVs should receive more policy support.4. Consumer research in several countries shows that mainstream consumers tend to be more attracted to PHEVs than to BEVs, however many consumers are unaware of how a PHEV diff ers from a BEV. Consumers and car dealerships need to be educated about PHEVs, their benefi ts, and the importance of charging the vehicles
A review of consumer preferences of and interactions with electric vehicle charging infrastructure
This paper presents a literature review of studies that investigate infrastructure needs to support the market introduction of plug-in electric vehicles (PEVs). It focuses on literature relating to consumer preferences for charging infrastructure, and how consumers interact with and use this infrastructure. This includes studies that use questionnaire surveys, interviews, modelling, GPS data from vehicles, and data from electric vehicle charging equipment. These studies indicate that the most important location for PEV charging is at home, followed by work, and then public locations. Studies have found that more effort is needed to ensure consumers have easy access to PEV charging and that charging at home, work, or public locations should not be free of cost. Research indicates that PEV charging will not impact electricity grids on the short term, however charging may need to be managed when the vehicles are deployed in greater numbers. In some areas of study the literature is not sufficiently mature to draw any conclusions from. More research is especially needed to determine how much infrastructure is needed to support the roll out of PEVs. This paper ends with policy implications and suggests avenues of future research
Battery Electric Vehicle Fast Charging–Evidence from the Norwegian Market
Norway is the largest Battery Electric Vehicle (BEV) market in the world per capita. The share of the passenger vehicle fleet passed 9.4% at the end of 2019, and users have access to 1500 Combined Charging System (CCS)/Chademo standard fast chargers located in more than 500 different locations. This paper analyses the usage pattern of these fast chargers using a dataset from two large operators covering most of their charging events between Q1 2016 and Q1 2018. The target of the analysis was to understand the fundamental factors that drive the demand for fast charging and influences the user experience, so that they can be taken into account when dimensioning charge facilities, and when designing vehicles. The data displays clear variations in charge power, charge time and charged energy between winter and summer, and a large spread of results due to the BEV models different technical characteristics. The charge power is clearly reduced in the winter compared to the summer, while the charge time is longer. Some charge events have a particularly low charge power which may be due to users fast charging a cold battery at a high State of Charge (SOC) in a vehicle with passive battery thermal management.publishedVersio
Can battery electric light commercial vehicles work for craftsmen and service enterprises?
Battery Electric Light Commercial Vehicles (BE-LCVs) can reduce the environmental impacts of Craftsmen and Service (C&S) Enterprises transportation. These Enterprises produce vital services, using diesel vehicles for transportation of personnel, tools and materials to worksites, thus contributing to pollution and greenhouse gas emissions. Enterprises that have taken BE-LCVs into use report practical range challenges leading to a need to reorganize their transportation activities. The driving pattern of 7 C&S enterprises operating 115 vehicles, were logged over two weeks. The potential of using BE-LCVs can be evaluated by combining the real range of BE-LCVs in Norway, with these driving patterns. Although 42% of diesel LCVs (D-LCVs) could be replaceable by BE-LCVs with a range of 170 km. Many covered so short daily distances that the transport work would only be reduced by 13%. The replaceable vehicles and transport work can increase by redistributing vehicle assignments, daytime charging, or with longer range BE-LCVs. If all year range increases to 200 km, then almost all vehicles are potentially replaceable. Purchase incentives are required to unlock the potential, but may, not produce large effects until the range improves. BE-LCVs with 50% longer range enters the market in 2018, which should expand the market.Can battery electric light commercial vehicles work for craftsmen and service enterprises?submittedVersio