163 research outputs found
Action Recognition from Single Timestamp Supervision in Untrimmed Videos
Recognising actions in videos relies on labelled supervision during training,
typically the start and end times of each action instance. This supervision is
not only subjective, but also expensive to acquire. Weak video-level
supervision has been successfully exploited for recognition in untrimmed
videos, however it is challenged when the number of different actions in
training videos increases. We propose a method that is supervised by single
timestamps located around each action instance, in untrimmed videos. We replace
expensive action bounds with sampling distributions initialised from these
timestamps. We then use the classifier's response to iteratively update the
sampling distributions. We demonstrate that these distributions converge to the
location and extent of discriminative action segments. We evaluate our method
on three datasets for fine-grained recognition, with increasing number of
different actions per video, and show that single timestamps offer a reasonable
compromise between recognition performance and labelling effort, performing
comparably to full temporal supervision. Our update method improves top-1 test
accuracy by up to 5.4%. across the evaluated datasets.Comment: CVPR 201
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
In this paper, we propose an approach that exploits object segmentation in
order to improve the accuracy of object detection. We frame the problem as
inference in a Markov Random Field, in which each detection hypothesis scores
object appearance as well as contextual information using Convolutional Neural
Networks, and allows the hypothesis to choose and score a segment out of a
large pool of accurate object segmentation proposals. This enables the detector
to incorporate additional evidence when it is available and thus results in
more accurate detections. Our experiments show an improvement of 4.1% in mAP
over the R-CNN baseline on PASCAL VOC 2010, and 3.4% over the current
state-of-the-art, demonstrating the power of our approach
- …