12,975 research outputs found

    Large signal 2nd harmonic on wafer MESFET characterization

    Get PDF
    An automatic test set which performs a real time harmonic load-pull characterization is proposed. An active load technique is used in order to set the load at the test frequency and its harmonics and a complete set of device parameters useful for power amplifier design purposes can be measured versus the harmonic loads. The calibration procedure, based on substrate and coaxial standards, has been mainly developed for on wafer measurement in order to set the reference planes directly on the DU

    Save the "THRU" in the A.N.A. calibration

    Get PDF
    The conventional network analyzer (NWA) two-port calibration procedures require a standard thru line to be connected between the ports. Unfortunately in many applications, for example when measuring MMIC or on-wafer devices with not aligned ports, a custom thru line must be used. The procedure here applied overcomes the difficulty due to the poor knowledge of this thru element since it is based on a generic reciprocal unknown two port structure, provided that its S21 phase shift is roughly known. Some experimental comparisons with other well sound calibration techniques will be here presented where different reciprocal two-port structures were used as unknown thr

    Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions

    Full text link
    We model the roadway of a suspension bridge as a thin rectangular plate and we study in detail its oscillating modes. The plate is assumed to be hinged on its short edges and free on its long edges. Two different kinds of oscillating modes are found: longitudinal modes and torsional modes. Then we analyze a fourth order hyperbolic equation describing the dynamics of the bridge. In order to emphasize the structural behavior we consider an isolated equation with no forcing and damping. Due to the nonlinear behavior of the cables and hangers, a structural instability appears. With a finite dimensional approximation we prove that the system remains stable at low energies while numerical results show that for larger energies the system becomes unstable. We analyze the energy thresholds of instability and we show that the model allows to give answers to several questions left open by the Tacoma collapse in 1940.Comment: 33 page

    Saddle Points Stability in the Replica Approach Off Equilibrium

    Full text link
    We study the replica free energy surface for a spin glass model near the glassy temperature. In this model the simplicity of the equilibrium solution hides non trivial metastable saddle points. By means of the stability analysis performed for one and two real replicas constrained, an interpretation for some of them is achieved.Comment: 10 pages and 3 figures upon request, Univerista` di Roma I preprint 94/100

    Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models

    Get PDF
    We consider least energy solutions to the nonlinear equation −Δgu=f(r,u)-\Delta_g u=f(r,u) posed on a class of Riemannian models (M,g)(M,g) of dimension n≄2n\ge 2 which include the classical hyperbolic space Hn\mathbb H^n as well as manifolds with unbounded sectional geometry. Partial symmetry and existence of least energy solutions is proved for quite general nonlinearities f(r,u)f(r,u), where rr denotes the geodesic distance from the pole of MM

    Accurate on-wafer power and harmonic measurements of mm-wave amplifiers and devices

    Get PDF
    A novel integrated test system that accurately measures on-wafer S-parameters, power levels, load-pull contours and harmonics over 1 to 50 GHz is presented. The system measures power and S-parameters with single contact measurements and integrated hardware. There are two keys to this system: first, the network analyzer samplers are used as frequency-selective power meters with large dynamic ranges; second, all measurements are vector-corrected to the device under test reference planes. The capabilities and accuracy were demonstrated by measuring the power at the fundamental frequency and four harmonic frequencies of a 50-GHz traveling wave amplifier and the load-pull contours of a MODFET at 30 GH

    Uniqueness of the thermodynamic limit for driven disordered elastic interfaces

    Get PDF
    We study the finite size fluctuations at the depinning transition for a one-dimensional elastic interface of size LL displacing in a disordered medium of transverse size M=kLζM=k L^\zeta with periodic boundary conditions, where ζ\zeta is the depinning roughness exponent and kk is a finite aspect ratio parameter. We focus on the crossover from the infinitely narrow (k→0k\to 0) to the infinitely wide (k→∞k\to \infty) medium. We find that at the thermodynamic limit both the value of the critical force and the precise behavior of the velocity-force characteristics are {\it unique} and kk-independent. We also show that the finite size fluctuations of the critical force (bias and variance) as well as the global width of the interface cross over from a power-law to a logarithm as a function of kk. Our results are relevant for understanding anisotropic size-effects in force-driven and velocity-driven interfaces.Comment: 10 pages, 12 figure