882 research outputs found
Galerkin projection of discrete fields via supermesh construction
Interpolation of discrete FIelds arises frequently in computational physics.
This thesis focuses on the novel implementation and analysis of Galerkin
projection, an interpolation technique with three principal advantages over
its competitors: it is optimally accurate in the L2 norm, it is conservative,
and it is well-defined in the case of spaces of discontinuous functions.
While these desirable properties have been known for some time, the implementation
of Galerkin projection is challenging; this thesis reports the first
successful general implementation.
A thorough review of the history, development and current frontiers of
adaptive remeshing is given. Adaptive remeshing is the primary motivation
for the development of Galerkin projection, as its use necessitates the interpolation
of discrete fields. The Galerkin projection is discussed and the
geometric concept necessary for its implementation, the supermesh, is introduced.
The efficient local construction of the supermesh of two meshes
by the intersection of the elements of the input meshes is then described.
Next, the element-element association problem of identifying which elements
from the input meshes intersect is analysed. With efficient algorithms for
its construction in hand, applications of supermeshing other than Galerkin
projections are discussed, focusing on the computation of diagnostics of simulations
which employ adaptive remeshing. Examples demonstrating the effectiveness
and efficiency of the presented algorithms are given throughout.
The thesis closes with some conclusions and possibilities for future work
Deflation for semismooth equations
Variational inequalities can in general support distinct solutions. In this
paper we study an algorithm for computing distinct solutions of a variational
inequality, without varying the initial guess supplied to the solver. The
central idea is the combination of a semismooth Newton method with a deflation
operator that eliminates known solutions from consideration. Given one root of
a semismooth residual, deflation constructs a new problem for which a
semismooth Newton method will not converge to the known root, even from the
same initial guess. This enables the discovery of other roots. We prove the
effectiveness of the deflation technique under the same assumptions that
guarantee locally superlinear convergence of a semismooth Newton method. We
demonstrate its utility on various finite- and infinite-dimensional examples
drawn from constrained optimization, game theory, economics and solid
mechanics.Comment: 24 pages, 3 figure
Efficient white noise sampling and coupling for multilevel Monte Carlo with non-nested meshes
When solving stochastic partial differential equations (SPDEs) driven by
additive spatial white noise, the efficient sampling of white noise
realizations can be challenging. Here, we present a new sampling technique that
can be used to efficiently compute white noise samples in a finite element
method and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit
the finite element matrix assembly procedure and factorize each local mass
matrix independently, hence avoiding the factorization of a large matrix.
Moreover, in a MLMC framework, the white noise samples must be coupled between
subsequent levels. We show how our technique can be used to enforce this
coupling even in the case of non-nested mesh hierarchies. We demonstrate the
efficacy of our method with numerical experiments. We observe optimal
convergence rates for the finite element solution of the elliptic SPDEs of
interest in 2D and 3D and we show convergence of the sampled field covariances.
In a MLMC setting, a good coupling is enforced and the telescoping sum is
respected.Comment: 28 pages, 10 figure
A full approximation scheme multilevel method for nonlinear variational inequalities
We present the full approximation scheme constraint decomposition (FASCD)
multilevel method for solving variational inequalities (VIs). FASCD is a common
extension of both the full approximation scheme (FAS) multigrid technique for
nonlinear partial differential equations, due to A.~Brandt, and the constraint
decomposition (CD) method introduced by X.-C.~Tai for VIs arising in
optimization. We extend the CD idea by exploiting the telescoping nature of
certain function space subset decompositions arising from multilevel mesh
hierarchies. When a reduced-space (active set) Newton method is applied as a
smoother, with work proportional to the number of unknowns on a given mesh
level, FASCD V-cycles exhibit nearly mesh-independent convergence rates, and
full multigrid cycles are optimal solvers. The example problems include
differential operators which are symmetric linear, nonsymmetric linear, and
nonlinear, in unilateral and bilateral VI problems.Comment: 25 pages, 9 figure
- …