135 research outputs found
Monitoring with uncertainty
We discuss the problem of runtime verification of an instrumented program
that misses to emit and to monitor some events. These gaps can occur when a
monitoring overhead control mechanism is introduced to disable the monitor of
an application with real-time constraints. We show how to use statistical
models to learn the application behavior and to "fill in" the introduced gaps.
Finally, we present and discuss some techniques developed in the last three
years to estimate the probability that a property of interest is violated in
the presence of an incomplete trace.Comment: In Proceedings HAS 2013, arXiv:1308.490
A temporal logic approach to modular design of synthetic biological circuits
We present a new approach for the design of a synthetic biological circuit
whose behaviour is specified in terms of signal temporal logic (STL) formulae.
We first show how to characterise with STL formulae the input/output behaviour
of biological modules miming the classical logical gates (AND, NOT, OR). Hence,
we provide the regions of the parameter space for which these specifications
are satisfied. Given a STL specification of the target circuit to be designed
and the networks of its constituent components, we propose a methodology to
constrain the behaviour of each module, then identifying the subset of the
parameter space in which those constraints are satisfied, providing also a
measure of the robustness for the target circuit design. This approach, which
leverages recent results on the quantitative semantics of Signal Temporal
Logic, is illustrated by synthesising a biological implementation of an
half-adder
A Formal Methods Approach to Pattern Synthesis in Reaction Diffusion Systems
We propose a technique to detect and generate patterns in a network of
locally interacting dynamical systems. Central to our approach is a novel
spatial superposition logic, whose semantics is defined over the quad-tree of a
partitioned image. We show that formulas in this logic can be efficiently
learned from positive and negative examples of several types of patterns. We
also demonstrate that pattern detection, which is implemented as a model
checking algorithm, performs very well for test data sets different from the
learning sets. We define a quantitative semantics for the logic and integrate
the model checking algorithm with particle swarm optimization in a
computational framework for synthesis of parameters leading to desired patterns
in reaction-diffusion systems
Computational Modeling, Formal Analysis, and Tools for Systems Biology.
As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science
- …