2,450 research outputs found

    Challenges in computational lower bounds

    Full text link
    We draw two incomplete, biased maps of challenges in computational complexity lower bounds

    Is It Real, or Is It Randomized?: A Financial Turing Test

    Full text link
    We construct a financial "Turing test" to determine whether human subjects can differentiate between actual vs. randomized financial returns. The experiment consists of an online video-game (http://arora.ccs.neu.edu) where players are challenged to distinguish actual financial market returns from random temporal permutations of those returns. We find overwhelming statistical evidence (p-values no greater than 0.5%) that subjects can consistently distinguish between the two types of time series, thereby refuting the widespread belief that financial markets "look random." A key feature of the experiment is that subjects are given immediate feedback regarding the validity of their choices, allowing them to learn and adapt. We suggest that such novel interfaces can harness human capabilities to process and extract information from financial data in ways that computers cannot.Comment: 12 pages, 6 figure

    A Computational View of Market Efficiency

    Get PDF
    We propose to study market efficiency from a computational viewpoint. Borrowing from theoretical computer science, we define a market to be \emph{efficient with respect to resources SS} (e.g., time, memory) if no strategy using resources SS can make a profit. As a first step, we consider memory-mm strategies whose action at time tt depends only on the mm previous observations at times t−m,...,t−1t-m,...,t-1. We introduce and study a simple model of market evolution, where strategies impact the market by their decision to buy or sell. We show that the effect of optimal strategies using memory mm can lead to "market conditions" that were not present initially, such as (1) market bubbles and (2) the possibility for a strategy using memory m′>mm' > m to make a bigger profit than was initially possible. We suggest ours as a framework to rationalize the technological arms race of quantitative trading firms

    Short PCPs with projection queries

    Get PDF
    We construct a PCP for NTIME(2 n) with constant soundness, 2 n poly(n) proof length, and poly(n) queries where the verifier’s computation is simple: the queries are a projection of the input randomness, and the computation on the prover’s answers is a 3CNF. The previous upper bound for these two computations was polynomial-size circuits. Composing this verifier with a proof oracle increases the circuit-depth of the latter by 2. Our PCP is a simple variant of the PCP by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (CCC 2005). We also give a more modular exposition of the latter, separating the combinatorial from the algebraic arguments. If our PCP is taken as a black box, we obtain a more direct proof of the result by Williams, later with Santhanam (CCC 2013) that derandomizing circuits on n bits from a class C in time 2 n /n ω(1) yields that NEXP is not in a related circuit class C ′. Our proof yields a tighter connection: C is an And-Or of circuits from C ′. Along the way we show that the same lower bound follows if the satisfiability of the And of any 3 circuits from C ′ can be solved in time 2 n /n ω(1). ∗The research leading to these results has received funding from the European Community’

    On Randomness Extraction in AC0

    Get PDF
    We consider randomness extraction by AC0 circuits. The main parameter, n, is the length of the source, and all other parameters are functions of it. The additional extraction parameters are the min-entropy bound k=k(n), the seed length r=r(n), the output length m=m(n), and the (output) deviation bound epsilon=epsilon(n). For k = r+1) is possible if and only if k * r > n/poly(log(n)). For k >= n/log^(O(1))(n), we show that AC0-extraction of r+Omega(r) bits is possible when r=O(log(n)), but leave open the question of whether more bits can be extracted in this case. The impossibility result is for constant epsilon, and the possibility result supports epsilon=1/poly(n). The impossibility result is for (possibly) non-uniform AC0, whereas the possibility result hold for uniform AC0. All our impossibility results hold even for the model of bit-fixing sources, where k coincides with the number of non-fixed (i.e., random) bits. We also consider deterministic AC0 extraction from various classes of restricted sources. In particular, for any constant delta>0delta>0, we give explicit AC0 extractors for poly(1/delta) independent sources that are each of min-entropy rate delta; and four sources suffice for delta=0.99. Also, we give non-explicit AC0 extractors for bit-fixing sources of entropy rate 1/poly(log(n)) (i.e., having n/poly(log(n)) unfixed bits). This shows that the known analysis of the "restriction method" (for making a circuit constant by fixing as few variables as possible) is tight for AC0 even if the restriction is picked deterministically depending on the circuit

    Fourier Conjectures, Correlation Bounds, and Majority

    Get PDF
    International audienceRecently several conjectures were made regarding the Fourier spectrum of lowdegree polynomials. We show that these conjectures imply new correlation bounds for functions related to Majority. Then we prove several new results on correlation bounds which aim to, but don't, resolve the conjectures. In particular, we prove several new results on Majority which are of independent interest and complement Smolensky's classic result

    New Sampling Lower Bounds via the Separator

    Get PDF
    Suppose that a target distribution can be approximately sampled by a low-depth decision tree, or more generally by an efficient cell-probe algorithm. It is shown to be possible to restrict the input to the sampler so that its output distribution is still not too far from the target distribution, and at the same time many output coordinates are almost pairwise independent. This new tool is then used to obtain several new sampling lower bounds and separations, including a separation between AC0 and low-depth decision trees, and a hierarchy theorem for sampling. It is also used to obtain a new proof of the Patrascu-Viola data-structure lower bound for Rank, thereby unifying sampling and data-structure lower bounds

    Bounded Independence vs. Moduli

    Get PDF
    Let k = k(n) be the largest integer such that there exists a k-wise uniform distribution over {0,1}^n that is supported on the set S_m := {x in {0,1}^n: sum_i x_i equiv 0 mod m}, where m is any integer. We show that Omega(n/m^2 log m) <= k <= 2n/m + 2. For k = O(n/m) we also show that any k-wise uniform distribution puts probability mass at most 1/m + 1/100 over S_m. For any fixed odd m there is k ge (1 - Omega(1))n such that any k-wise uniform distribution lands in S_m with probability exponentially close to |S_m|/2^n; and this result is false for any even m

    Bounded Independence Plus Noise Fools Products

    Get PDF
    Let D be a b-wise independent distribution over {0,1}^m. Let E be the "noise" distribution over {0,1}^m where the bits are independent and each bit is 1 with probability eta/2. We study which tests f: {0,1}^m -> [-1,1] are epsilon-fooled by D+E, i.e., |E[f(D+E)] - E[f(U)]| <= epsilon where U is the uniform distribution. We show that D+E epsilon-fools product tests f: ({0,1}^n)^k -> [-1,1] given by the product of k bounded functions on disjoint n-bit inputs with error epsilon = k(1-eta)^{Omega(b^2/m)}, where m = nk and b >= n. This bound is tight when b = Omega(m) and eta >= (log k)/m. For b >= m^{2/3} log m and any constant eta the distribution D+E also 0.1-fools log-space algorithms. We develop two applications of this type of results. First, we prove communication lower bounds for decoding noisy codewords of length m split among k parties. For Reed-Solomon codes of dimension m/k where k = O(1), communication Omega(eta m) - O(log m) is required to decode one message symbol from a codeword with eta m errors, and communication O(eta m log m) suffices. Second, we obtain pseudorandom generators. We can epsilon-fool product tests f: ({0,1}^n)^k -> [-1,1] under any permutation of the bits with seed lengths 2n + O~(k^2 log(1/epsilon)) and O(n) + O~(sqrt{nk log 1/epsilon}). Previous generators have seed lengths >= nk/2 or >= n sqrt{n k}. For the special case where the k bounded functions have range {0,1} the previous generators have seed length >= (n+log k)log(1/epsilon)
    • …
    corecore