49 research outputs found

    Food-offering calls in wild golden lion tamarins (Leontopithecus rosalia) : evidence for teaching behavior?

    Get PDF
    Many animals emit calls in the presence of food, but researchers do not always know the function of these calls. Evidence suggests that adult golden lion tamarins (Leontopithecus rosalia) use food-offering calls to teach juveniles which substrate (i.e., microhabitat) to forage on, or in, for food. However, we do not yet know whether juveniles learn from this aspect of the adults’ behavior. Here we examine whether juveniles learn to associate food-offering calls with a foraging substrate, as a step toward assessing whether these calls qualify as teaching behavior. We compared the performance of four wild juvenile golden lion tamarins that were introduced to a novel substrate while exposed to playbacks of food-offering calls (experimental condition) to the performance of three juveniles that were exposed to the novel substrate without the presence of food-offering playbacks (control condition). We varied the location of the novel substrate between trials. We found that food-offering calls had an immediate effect on juveniles’ interactions with the novel substrate, whether they inserted their hands into the substrate and their eating behavior, and a long-term effect on eating behavior at the substrate. The findings imply that juvenile golden lion tamarins can learn through food-offering calls about the availability of food at a substrate, which is consistent with (but does not prove) teaching in golden lion tamarins through stimulus enhancement. Our findings support the hypothesis that teaching might be more likely to evolve in cooperatively breeding species with complex ecological niches.Publisher PDFPeer reviewe

    Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why?

    Get PDF
    Recently, a shift in preen wax composition, from lower molecular weight monoesters to higher molecular weight diesters, was described for individuals of a sandpiper species (red knot, Calidris canutus) that were about to leave for the tundra breeding grounds. The timing of the shift indicated that diester waxes served as a quality signal during mate choice. Here, this hypothesis is evaluated on the basis of a survey of preen wax composition in 19 sandpiper species. All of these species showed the same shift observed in the high-Arctic breeding red knots. As the shift also occurred in temperate breeding species, it is not specific to tundra-breeding sandpipers. Both sexes produced the diester waxes during the incubation period until hatching, in addition to the short period of courtship, indicating that diesters' functions extend beyond that of a sexually selected 'make-up'. The few non-incubating birds examined (males of curlew sandpipers (C. ferruginea) and ruffs (Philomachus pugnax)) had the lowest likelihood of secreting diesters, indicating a functional role for diester preen waxes during incubation. We propose that diester preen waxes enhance olfactory crypticism at the nest

    Africa-EU Partnership on Peace and Security

    No full text
    This chapter explores the impact of the inclusion of security considerations on efforts to transform EU-Africa relations as reflected in the Joint Africa-EU Strategy (JAES). Using a historical institutionalist framework, it assesses the conditions under which changes have occurred in Europe's relationship with Africa through the development of a unique type of security cooperation

    Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat

    No full text
    1. The functional significance of intra- and interspecific structural variations in the flight feathers of birds is poorly understood. Here, a phylogenetic comparative analysis of four structural features (rachis width, barb and barbule density and porosity) of proximal and distal primary feathers of 137 European bird species was conducted. 2. Flight type (flapping and soaring, flapping and gliding, continuous flapping or passerine type), habitat (terrestrial, riparian or aquatic), wing characteristics (wing area, S and aspect ratio, AR) and moult strategy were all found to affect feather structure to some extent. Species characterized by low wing-beat frequency flight (soaring and gliding) have broader feather rachises (shafts) and feather vanes with lower barb density than birds associated with more active flapping modes of flight. However, the effect of flying mode on rachis width disappeared after controlling for S and AR, suggesting that rachis width is primarily determined by wing morphology. 3. Rachis width and feather vane density are likely related to differences in force distribution across the wingspan during different flight modes. An increase in shaft diameter, barb density and porosity from the proximal to distal wing feathers was found and was highest in species with flapping flight indicating that aerodynamic forces are more biased towards the distal feathers in flapping flyers than in soarers and gliders. 4. Habitat affected barb and barbule density, which was greatest in aquatic species, and within this group, barb density was greater in divers than non-divers, suggesting that the need for water repellency and resistance to water penetration may influence feather structure. However, we found little support for the importance of porosity in water repellency and water penetration, because porosity was similar in aquatic, riparian and terrestrial species and among the aquatic birds (divers and non-divers). We also found that barb density was affected by moult pattern. 5. Our results have broad implications for the understanding of the selection pressures driving flight feather functional morphology. Specifically, the large sample size relative to any previous studies has emphasized that the morphology of flight feathers is the result of a suite of selection pressures. As well as routine flight needs, constraints during moulting, habitat (particularly aquatic) and migratory requirements also affect flight feather morphology. Identifying the exact nature of these trade-offs will perhaps inform the reconstruction of the flying modes of extinct birds
    corecore