9 research outputs found

    Colloidal Nanocrystal-Based BaTiO<sub>3</sub> Xerogels as Green Bodies: Effect of Drying and Sintering at Low Temperatures on Pore Structure and Microstructures

    No full text
    Although aerogels prepared by the colloidal assembly of nanoparticles are a rapidly emerging class of highly porous and low-density materials, their ambient dried counterparts, namely xerogels, have hardly been explored. Here we report the use of nanoparticle-based BaTiO<sub>3</sub> xerogels as green bodies, which provide a versatile route to ceramic materials under the minimization of organic additives with a significant reduction of the calcination temperature compared to that of conventional powder sintering. The structural changes of the xerogels are investigated during ambient drying by carefully analyzing the microstructure at different drying stages. For this purpose, the shrinkage was arrested by a supercritical drying step under full preservation of the intermediate microstructure, giving unprecedented insight into the structural changes during ambient drying of a nanoparticle-based gel. In a first step, the large macropores shrink because of capillary forces, followed by the collapse of residual mesopores until a dense xerogel is obtained. The whole process is accompanied by a volume shrinkage of 97% and a drop in surface area from 300 to 220 m<sup>2</sup> g<sup>–1</sup>. Finally, the xerogels are sintered, causing another shrinkage of up to 8% with a slight increase in the average pore and crystal sizes. At temperatures higher than 700 °C, an unexpected phase transition to BaTi<sub>2</sub>O<sub>5</sub> is observed

    Synthesis, Spray Deposition, and Hot-Press Transfer of Copper Nanowires for Flexible Transparent Electrodes

    No full text
    We report a solution-phase approach to the synthesis of crystalline copper nanowires (Cu NWs) with an aspect ratio >1000 via a new catalytic mechanism comprising copper ions. The synthesis involves the reaction between copper­(II) chloride and copper­(II) acetylacetonate in a mixture of oleylamine and octadecene. Reaction parameters such as the molar ratio of precursors as well as the volume ratio of solvents offer the possibility to tune the morphology of the final product. A simple low-cost spray deposition method was used to fabricate Cu NW films on a glass substrate. Post-treatment under reducing gas (5% H<sub>2</sub> + 95% N<sub>2</sub>) atmosphere resulted in Cu NW films with a low sheet resistance of 24.5 Ω/sq, a transmittance of <i>T</i> = 71% at 550 nm (including the glass substrate), and a high oxidation resistance. Moreover, the conducting Cu NW networks on a glass substrate can easily be transferred onto a polycarbonate substrate using a simple hot-press transfer method without compromising on the electrical performance. The resulting flexible transparent electrodes show excellent flexibility (<i>R</i>/<i>R</i><sub>o</sub> < 1.28) upon bending to curvatures of 1 mm radius

    Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling

    No full text
    Aqueous zinc ion batteries are highly attractive for large-scale storage applications because of their inherent safety, low cost, and durability. Yet, their advancement is hindered by a dearth of positive host materials (cathode) due to sluggish diffusion of Zn<sup>2+</sup> inside solid inorganic frameworks. Here, we report on a novel organic host, tetrachloro-1,4-benzoquinone (also called: p-chloranil), which due to its inherently soft crystal structure can provide reversible and efficient Zn<sup>2+</sup> storage. It delivers a high capacity of ≄200 mAh g<sup>–1</sup> with a very small voltage polarization of 50 mV in a flat plateau around 1.1 V, which equate to an attractive specific energy of >200 Wh kg<sup>–1</sup> at an unparalleled energy efficiency (∌95%). As unraveled by density functional theory (DFT) calculations, the molecular columns in p-chloranil undergo a twisted rotation to accommodate Zn<sup>2+</sup>, thus restricting the volume change (−2.7%) during cycling. In-depth characterizations using operando X-ray diffraction, electron microscopy, and impedance analysis reveal a unique phase evolution, driven by a phase transfer mechanism occurring at the boundary of solid and liquid phase, which leads to unrestricted growth of discharged/charged phases. By confining the p-chloranil inside nanochannels of mesoporous carbon CMK-3, we can tame the phase evolution process, and thus stabilize the electrochemical cycling

    Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure–Property Relations

    No full text
    In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil–water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products

    Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure–Property Relations

    No full text
    In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil–water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products

    Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure–Property Relations

    No full text
    In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil–water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products

    Pickering and Network Stabilization of Biocompatible Emulsions Using Chitosan-Modified Silica Nanoparticles

    No full text
    Edible solid particles constitute an attractive alternative to surfactants as stabilizers of food-grade emulsions for products requiring a long-term shelf life. Here, we report on a new approach to stabilize edible emulsions using silica nanoparticles modified by noncovalently bound chitosan oligomers. Electrostatic modification with chitosan increases the hydrophobicity of the silica nanoparticles and favors their adsorption at the oil–water interface. The interfacial adsorption of the chitosan-modified silica particles enables the preparation of oil-in-water emulsions with small droplet sizes of a few micrometers through high-pressure homogenization. This approach enables the stabilization of food-grade emulsions for more than 3 months. The emulsion structure and stability can be effectively tuned by controlling the extent of chitosan adsorption on the silica particles. Bulk and interfacial rheology are used to highlight the two stabilization mechanisms involved. Low chitosan concentration (1 wt % with respect to silica) leads to the formation of a viscoelastic film of particles adsorbed at the oil–water interface, enabling Pickering stabilization of the emulsion. By contrast, a network of agglomerated particles formed around the droplets is the predominant stabilization mechanism of the emulsions at higher chitosan content (5 wt % with respect to silica). These two pathways against droplet coalescence and coarsening open up different possibilities to engineer the long-term stabilization of emulsions for food applications

    Pickering and Network Stabilization of Biocompatible Emulsions Using Chitosan-Modified Silica Nanoparticles

    No full text
    Edible solid particles constitute an attractive alternative to surfactants as stabilizers of food-grade emulsions for products requiring a long-term shelf life. Here, we report on a new approach to stabilize edible emulsions using silica nanoparticles modified by noncovalently bound chitosan oligomers. Electrostatic modification with chitosan increases the hydrophobicity of the silica nanoparticles and favors their adsorption at the oil–water interface. The interfacial adsorption of the chitosan-modified silica particles enables the preparation of oil-in-water emulsions with small droplet sizes of a few micrometers through high-pressure homogenization. This approach enables the stabilization of food-grade emulsions for more than 3 months. The emulsion structure and stability can be effectively tuned by controlling the extent of chitosan adsorption on the silica particles. Bulk and interfacial rheology are used to highlight the two stabilization mechanisms involved. Low chitosan concentration (1 wt % with respect to silica) leads to the formation of a viscoelastic film of particles adsorbed at the oil–water interface, enabling Pickering stabilization of the emulsion. By contrast, a network of agglomerated particles formed around the droplets is the predominant stabilization mechanism of the emulsions at higher chitosan content (5 wt % with respect to silica). These two pathways against droplet coalescence and coarsening open up different possibilities to engineer the long-term stabilization of emulsions for food applications
    corecore