79 research outputs found

    INSILICO DOCKING STUDIES TO IDENTIFY POTENT INHIBITORS OF ALPHA-SYNUCLEIN AGGREGATION IN PARKINSON DISEASE

    Get PDF
    Background: Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Etiology of PD is progressive loss of dopaminergic neurons in Substantia nigra pars compacta (SNpc). One of the pathological hallmarks of PD is the presence of intracellular proteinaceous substances termed ‘Lewy bodies' composed of aggregated alpha-synuclein which is responsible for its toxic effect on SNpc. Hence any therapeutic target which blocks α-synuclein aggregation will provide a new channel to cure PD. Objective: The aim of the present study is to identify potent inhibitors (ligands) which binds to active site of α-synuclein and prevents self-association. Methods: In this study, insilico molecular docking was done against α-synuclein using five plant derived compounds namely (a) stimovul (b) 7,8dihydroxycoumarin, (c) etorphine (d) propoxyphene and (e) pentazdine. These compounds were analyzed for their Lipinski and ADMET properties using Accelrys Discovery studio 3.5. Molecular docking was performed between ligand and protein using Lead IT. Results: Results revealed that the best fit ligands against active site of α-synuclein were identified as Stimovul with a docking score of -4.5122 and the interacting amino acids were found to be SER 87 and VAL 95 followed by other compounds. Conclusion: These compounds which have the ability to bind to α-Synuclein insilico can be further developed using invitro and in vivo studies as a potent anti-parkinson drug.   Keywords: Parkinson disease, Substantia nigra, Molecular docking, Lipinski, ADMET

    In vitro and in vivo evaluation of the biofilm-degrading Pseudomonas phage Motto, as a candidate for phage therapy

    Get PDF
    Infections caused by Pseudomonas aeruginosa are becoming increasingly difficult to treat due to the emergence of strains that have acquired multidrug resistance. Therefore, phage therapy has gained attention as an alternative to the treatment of pseudomonal infections. Phages are not only bactericidal but occasionally show activity against biofilm as well. In this study, we describe the Pseudomonas phage Motto, a T1-like phage that can clear P. aeruginosa infections in an animal model and also exhibits biofilm-degrading properties. The phage has a substantial anti-biofilm activity against strong biofilm-producing isolates (n = 10), with at least a twofold reduction within 24 h. To demonstrate the safety of using phage Motto, cytotoxicity studies were conducted with human cell lines (HEK 293 and RAW 264.7 macrophages). Using a previously established in vivo model, we demonstrated the efficacy of Motto in Caenorhabditis elegans, with a 90% survival rate when treated with the phage at a multiplicity of infection of 10

    Ultrasound-guided compression method effectively counteracts Russell’s viper bite-induced pseudoaneurysm

    Get PDF
    Russell’s viper (Daboia russelii), one of the ‘Big Four’ venomous snakes in India is responsible for a majority of snakebite-induced deaths and permanent disabilities. Russell’s viper bites are known to induce bleeding/clotting abnormalities as well as myotoxic, nephrotoxic, cytotoxic and neurotoxic envenomation effects. In addition, they have been reported to induce rare envenomation effects such as priapism, sialolithiasis and splenic rupture. However, Russell’s viper bite-induced pseudoaneurysm (PA) has not been previously reported. PA or false aneurysm is a rare phenomenon that occurs in arteries following traumatic injuries includ-ing some animal bites, and it can become a life-threatening condition if not treated promptly. Here, we document two clinical cas-es of Russell’s viper bites where PA has developed despite antivenom treatment. Notably, a non-surgical procedure, ultra-sound-guided compression (USGC), either alone, or in combination with thrombin was effectively used in both the cases to treat the PA. Following this procedure and additional measures, the patients made complete recoveries without the recurrence of PA which were confirmed by subsequent examination and ultrasound scans. These data demonstrate the development of PA as a rare complication following Russell’s viper bites and the effective use of a simple, non-surgical procedure, USGC for the successful treatment of PA. These results will create awareness among healthcare professionals on the development of PA and the use of USGC in snakebite victims following Russell’s viper as well as other viper bites

    Specific versus Non-Specific Immune Responses in an Invertebrate Species Evidenced by a Comparative de novo Sequencing Study

    Get PDF
    Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5′-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5′-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses

    In vitro antioxidant potential and deoxyribonucleic acid protecting activity of CNB-001, a novel pyrazole derivative of curcumin

    No full text
    Background: Free radicals are underpinned to initiate cascade of toxic events leading to oxidative stress and resultant cell death in many neurodegenerative disorders. Now-a-days antioxidants have become mandatory in the treatment of various diseases apart from the drug′s modes of action. CNB-001, a novel hybrid molecule synthesized by combining curcumin and cyclohexyl bisphenol A is known to possess various biological activities, but the antioxidative property of the compound has not yet been elucidated. Aim: The present study is aimed to analyze various free radicals scavenging by employing in vitro antioxidant assays and to evaluate the deoxyribonucleic acid (DNA) protecting the ability of CNB-001 against hydroxyl radicals. Materials and methods: The in vitro antioxidant potential of CNB-001 was evaluated by analyzing its ability to scavenge DPPH, ABTS, nitric oxide, superoxide, hydrogen peroxide, superoxide anion, hydroxyl, hydrogen peroxide radicals and reducing power using spectroscopic method. The DNA protecting activity of CNB-001 was also evaluated on pUC19 plasmid DNA subjected to hydroxyl radicals using standard agarose gel electrophoresis. Results: From the assays, it was observed that CNB-001 scavenged free radicals effectively in a dose dependent manner. CNB-001 scavenged 2,2-diphenyl-1-picrylhydrazyl (IC50 = 44.99 μg/ml), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (IC50 = 17.99 μg/ml), nitric oxide (IC50 = 1.36 μg/ml), superoxide radical (IC50 = 77.17 μg/ml), hydrogen peroxide (IC50 = 492.7 μg/ml), superoxide (IC50 = 36.92 μg/ml) and hydroxyl (IC50 = 456.5 μg/ml) radicals effectively and the reducing power was found to be 11.53 μg/ml. CNB-001 showed considerable protecting activity against plasmid DNA (pUC19) strand scission by ·OH at dose dependent manner. Conclusion: Results from these assays concluded that CNB-001 has a good antioxidant potential by reducing reactive oxygen and reactive nitrogen radicals and it showed significant protecting activity against DNA scission by hydroxyl radicals. Hence, CNB-001 can be further developed as potential drug for free radical induced neurodegenerative disorders
    corecore