80 research outputs found
On Construction of Tri-Concept Lattices
The main point is to define the structure of a Tri-Concept lattice to deal with data given by different sources and represent it by less complex structures without loosing knowledge. We suggest the algorithm TRI-NEST to form the nested diagrams corresponding to the Tri-Concept lattices. Adding the ICE-T algorithm enables us to generate all frequently closed concepts, which leads to simplifying the Tri-Concept lattices and using the Iceberg Concept lattices as a reduction method to the big data while preserving all information
Purification of kappa (k)-carrageenase from locally isolated Cellulosimicrobium cellulans
Partial purification of the crude kappa (k)-carrageenase present in the culture filtrates of Cellulosimicrobium cellulans was carried out by fractional precipitation, using ammonium sulphate, acetone and ethanol individually. The highest recovered protein (37.08%) combined with enzyme activity was obtained with ammonium sulphate. The fraction precipitated by 90% ammonium sulphate was re-purified by anion exchange chromatography diethylaminoethyl (DEAE) cellulose, A-52 and 79 fractions were obtained. The loaded protein was separated into 4 peaks. The third protein peak was the major one which contained the most recovered enzyme activity (84.95%) from the eluted fractions. The collected fractions of this peak were subjected to further purification by re-chromatography on Sephadex G-100. The k-carrageenase activity was fractionated into 2 peaks. The first peak was the major one containing 95.622% of the total recovered activity. The pooled fractions of the major protein component showed a specific k-carrageenase activity of 46.22 U/mg protein, yielding about 4.6 fold purification of the crude enzyme preparation. Some properties of purified k-carrageenase obtained from cellusimicrobium cellulans cultures were studied. The optimum reaction temperature of the purified k-carrageenase was 30°C and the maximum activity occurred at a reaction pH of 6.Key words: Cellulosimicrobium cellulans, k-carrageenase, purification, sephadex G-100, diethylaminoethyl (DEAE) sephadex A-52
Changes in the human peritoneal mesothelial cells during aging
The number of older patients admitted to peritoneal dialysis (PD) programmes is growing. At the same time, there is increasing data about the role of mesothelial cells in determining the functional alteration of the peritoneum during PD. However, little is known about the functional changes accompanying the ageing process in mesothelial cells. We aimed to evaluate whether the aging process is accompanied by changes in some functional characteristic of the human peritoneal mesothelial cells (HPMC), which could account for the poor prognosis observed in old patients with PD. HPMCs were isolated from patients undergoing a nonurgent, nonseptic abdominal surgical procedure, without renal, vascular or inflammatory disease. Cytokine levels (by enzyme-linked immunosorbent assay (ELISA)), nitrates+nitrites, and cyclooxygenase (COX) activity (by a chemiluminescence assay), cytokines, COX, nitric oxide synthase (NOS), and nuclear factor (NF)-κB1, two messenger ribonucleic acid (mRNA) gene expressions (by reverse transcriptase (RT)-Multiplex PCR), COX, and NOS promoter gene activities, and NF-κB-dependent transcription (by transient transfection assays) were determined. Our data show a significant increase in cytokines, COX, and NOS activities, and mRNA expression of cytokines, COX-2, inducible nitric oxide synthase (iNOS) and precursors of NF-κB in HPMCs from old people. This was also the case for COX-2 and iNOS promoter gene activities and NF-κB-dependent transcription. There was a positive correlation between the age of the donor's cell and the proinflammatory profile of the HPMCs. Such age-dependent increase (around two–three times) is partially abolished by different antioxidant or free-radical scavengers. Thus, aging is accompanied by the presence of an inflammatory state in HPMCs, which involves the participation of different reactive oxygen species
Dietary clenbuterol modifies the expression of genes involved in the regulation of lipid metabolism and growth in the liver, skeletal muscle, and adipose tissue of Nile tilapia (Oreochromis niloticus)
The current study aimed to evaluate whether clenbuterol, a β2-adrenergic agonist, supplementation in Nile tilapia (Oreochromis niloticus) diets can influence growth and blood parameters. Besides, assessment of adipogenic genes as fatty acid synthase (FAS) and lipoprotein lipase (LPL) which is a key enzyme in the regulation of the flux of fatty acids in liver, muscle, and adipose tissue as well as muscle growth-regulating genes as myostatin (MYO) in muscle and insulin-like growth factor-1 (IGF-1) in liver. The fish were allocated into three equal groups; control group that fed basal diet only and the other two groups fed a basal diet containing clenbuterol at two doses 5 ppm and 10 ppm/kg diet for 30 consecutive days. Results revealed that clenbuterol supplementation significantly increased body weight, decreased liver, spleen and abdominal fat weights, and decreased total circulatory cholesterol and triacylglycerol levels. Moreover, clenbuterol inhibits lipogenesis by downregulation of FAS gene expression by dose and time-dependent manner in the liver while enhanced lipolysis in both the liver and in the adipose tissue. Moreover, lipolysis was reduced in muscle by dose 10 ppm on day 30. Furthermore, clenbuterol presented higher gene expression of MYO and IGF-1 in muscle and liver respectively by dose 5 ppm at day 15 on the other hand, these findings were reversed by day 30 compared with control. In conclusion, clenbuterol efficacy was apparent in a dose and time response pattern to boost growth and reduce fat deposition rates, indicating for the first time that clenbuterol has a profitable growth impact on Nile tilapia
Exploring the multimodal role of yucca schidigera extract in protection against chronic ammonia exposure targeting: Growth, metabolic, stress and inflammatory responses in nile tilapia (oreochromis niloticus l.)
Ammonia is a critical hazardous nitrogen metabolic product in aquaculture. Despite trials for its control, ammonia intoxication remains one of the most critical issues to overcome. In this study, we explored the modulatory effect and potential mechanism by which Yucca schidigera extract (YSE) can ameliorate ammonia intoxication-induced adverse effects on tilapia health and metabolism. A total number of 120 Nile tilapia were evenly assigned into four groups with three replicates each. The first group served as normal control group; the second group was exposed to ammonia alone from the beginning of the experiment and for four weeks. The third group was supplied with YSE in water at a dose of 8 mg/L and exposed to ammonia. The fourth group was supplied with YSE only in water at a dose of 8 mg/L. YSE supplementation succeeded in improving water quality by reducing pH and ammonia levels. Moreover, YSE supplementation markedly alleviated chronic ammonia-induced adverse impacts on fish growth by increasing the final body weight (FBW), specific growth rate (SGR), feed intake and protein efficiency ratio (PER) while reducing the feed conversion ratio (FCR) via improvements in food intake, elevation of hepatic insulin-like growth factor (ILGF-1) and suppression of myostatin (MSTN) expression levels with the restoration of lipid reserves and the activation of lipogenic potential in adipose tissue as demonstrated by changes in the circulating metabolite levels. In addition, the levels of hepato-renal injury biomarkers were restored, hepatic lipid peroxidation was inhibited and the levels of hepatic antioxidant biomarkers were enhanced. Therefore, the current study suggests that YSE supplementation exerted an ameliorative role against chronic ammonia-induced oxidative stress and toxic effects due to its free radical-scavenging potential, potent antioxidant activities and anti-inflammatory effects
Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells
BACKGROUND:
Diabetes mellitus is linked to pancreatic cancer. We hypothesized a role for pancreatic stellate cells (PSC) in the hyperglycemia induced deterioration of pancreatic cancer and therefore studied two human cell lines (RLT-PSC, T3M4) in hyperglycemic environment.
METHODOLOGY/PRINCIPAL FINDINGS:
The effect of chronic hyperglycemia (CHG) on PSCs was studied using mRNA expression array with real-time PCR validation and bioinformatic pathway analysis, and confirmatory protein studies. The stress fiber formation (IC: αSMA) indicated that PSCs tend to transdifferentiate to a myofibroblast-like state after exposure to CHG. The phosphorylation of p38 and ERK1/2 was increased with a consecutive upregulation of CDC25, SP1, cFOS and p21, and with downregulation of PPARγ after PSCs were exposed to chronic hyperglycemia. CXCL12 levels increased significantly in PSC supernatant after CHG exposure independently from TGF-β1 treatment (3.09-fold with a 2.73-fold without TGF-β1, p<0.05). The upregualtion of the SP1 transcription factor in PSCs after CHG exposure may be implicated in the increased CXCL12 and IGFBP2 production. In cancer cells, hyperglycemia induced an increased expression of CXCR4, a CXCL12 receptor that was also induced by PSC's conditioned medium. The receptor-ligand interaction increased the phosphorylation of ERK1/2 and p38 resulting in activation of MAP kinase pathway, one of the most powerful stimuli for cell proliferation. Certainly, conditioned medium of PSC increased pancreatic cancer cell proliferation and this effect could be partially inhibited by a CXCR4 inhibitor. As the PSC conditioned medium (normal glucose concentration) increased the ERK1/2 and p38 phosphorylation, we concluded that PSCs produce other factor(s) that influence(s) pancreatic cancer behaviour.
CONCLUSIONS:
Hyperglycemia induces increased CXCL12 production by the PSCs, and its receptor, CXCR4 on cancer cells. The ligand-receptor interaction activates MAP kinase signaling that causes increased cancer cell proliferation and migration
Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice
BACKGROUND:
High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions.
METHODOLOGY:
Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated β-galactosidase staining.
PRINCIPLE FINDINGS:
Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and β-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy.
CONCLUSION:
Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells
Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Substantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains
- …