8 research outputs found

    A Notion of Harmonic Clustering in Simplicial Complexes

    Full text link
    We outline a novel clustering scheme for simplicial complexes that produces clusters of simplices in a way that is sensitive to the homology of the complex. The method is inspired by, and can be seen as a higher-dimensional version of, graph spectral clustering. The algorithm involves only sparse eigenproblems, and is therefore computationally efficient. We believe that it has broad application as a way to extract features from simplicial complexes that often arise in topological data analysis

    Towards Directed Collapsibility

    Full text link
    In the directed setting, the spaces of directed paths between fixed initial and terminal points are the defining feature for distinguishing different directed spaces. The simplest case is when the space of directed paths is homotopy equivalent to that of a single path; we call this the trivial space of directed paths. Directed spaces that are topologically trivial may have non-trivial spaces of directed paths, which means that information is lost when the direction of these topological spaces is ignored. We define a notion of directed collapsibility in the setting of a directed Euclidean cubical complex using the spaces of directed paths of the underlying directed topological space relative to an initial or a final vertex. In addition, we give sufficient conditions for a directed Euclidean cubical complex to have a contractible or a connected space of directed paths from a fixed initial vertex. We also give sufficient conditions for the path space between two vertices in a Euclidean cubical complex to be disconnected. Our results have applications to speeding up the verification process of concurrent programming and to understanding partial executions in concurrent programs

    Combinatorial Conditions for Directed Collapsing

    Full text link
    The purpose of this article is to study directed collapsibility of directed Euclidean cubical complexes. One application of this is in the nontrivial task of verifying the execution of concurrent programs. The classical definition of collapsibility involves certain conditions on a pair of cubes of the complex. The direction of the space can be taken into account by requiring that the past links of vertices remain homotopy equivalent after collapsing. We call this type of collapse a link-preserving directed collapse. In this paper, we give combinatorially equivalent conditions for preserving the topology of the links, allowing for the implementation of an algorithm for collapsing a directed Euclidean cubical complex. Furthermore, we give conditions for when link-preserving directed collapses preserve the contractability and connectedness of directed path spaces, as well as examples when link-preserving directed collapses do not preserve the number of connected components of the path space between the minimum and a given vertex.Comment: 23 pages, 11 figure
    corecore