76 research outputs found

    Supersymmetric models with minimal flavour violation and their running

    Full text link
    We revisit the formulation of the principle of minimal flavor violation (MFV) in the minimal supersymmetric extension of the standard model, both at moderate and large tan(beta), and with or without new CP-violating phases. We introduce a counting rule which keeps track of the highly hierarchical structure of the Yukawa matrices. In this manner, we are able to control systematically which terms can be discarded in the soft SUSY breaking part of the Lagrangian. We argue that for the implementation of this counting rule, it is convenient to introduce a new basis of matrices in which both the squark (and slepton) mass terms as well as the trilinear couplings can be expanded. We derive the RGE for the MFV parameters and show that the beta functions also respect the counting rule. For moderate tan(beta), we provide explicit analytic solutions of these RGE and illustrate their behaviour by analyzing the neighbourhood (also switching on new phases) of the SPS-1a benchmark point. We then show that even in the case of large tan(beta), the RGE remain valid and that the analytic solutions obtained for moderate tan(beta) still allow us to understand the most important features of the running of the parameters, as illustrated with the help of the SPS-4 benchmark point.Comment: plain latex, 38 pages and 5 figures Eq. (12) corrected and one reference added, conclusions unchanged. Published versio

    Minimal Flavour Violation for Leptoquarks

    Get PDF
    Scalar leptoquarks, with baryon and lepton number conserving interactions, could have TeV scale masses, and be produced at colliders or contribute to a wide variety of rare decays. In pursuit of some insight as to the most sensitive search channels, We assume that the leptoquark-lepton-quark coupling can be constructed from the known mass matrices. We estimate the rates for selected rare processes in three cases: leptoquarks carrying lepton and quark flavour, leptoquarks with quark flavour only, and unflavoured leptoquarks. We find that leptoquark decay to top quarks is an interesting search channel.Comment: 17 pages, 2 figures, minor changes and references adde

    Dark Matter from Minimal Flavor Violation

    Full text link
    We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splittings among the flavors of dark matter and governs the structure of the couplings between dark matter and ordinary particles, leading to a rich and predictive cosmology and phenomenology. We present an illustrative phenomenological study of an effective theory of a flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider analysis, conclusions unchange

    A Collective Breaking of R-Parity

    Full text link
    Supersymmetric theories with an R-parity generally yield a striking missing energy signature, with cascade decays concluding in a neutralino that escapes the detector. In theories where R-parity is broken the missing energy is replaced with additional jets or leptons, often making traditional search strategies ineffective. Such R-parity violation is very constrained, however, by resulting B and L violating signals, requiring couplings so small that LSPs will decay outside the detector in all but a few scenarios. In theories with additional matter fields, R-parity can be broken collectively, such that R-parity is not broken by any single coupling, but only by an ensemble of couplings. Cascade decays can proceed normally, with each step only sensitive to one or two couplings at a time, but B and L violation requires the full set, yielding a highly suppressed constraint. s-channel production of new scalar states, typically small for standard RPV, can be large when RPV is broken collectively. While missing energy is absent, making these models difficult to discover by traditional SUSY searches, they produce complicated many object resonances (MORes), with many different possible numbers of jets and leptons. We outline a simple model and discuss its discoverability at the LHC.Comment: 28 pages, 10 figure

    A Stealth Supersymmetry Sampler

    Get PDF
    The LHC has strongly constrained models of supersymmetry with traditional missing energy signatures. We present a variety of models that realize the concept of Stealth Supersymmetry, i.e. models with R-parity in which one or more nearly-supersymmetric particles (a "stealth sector") lead to collider signatures with only a small amount of missing energy. The simplest realization involves low-scale supersymmetry breaking, with an R-odd particle decaying to its superpartner and a soft gravitino. We clarify the stealth mechanism and its differences from compressed supersymmetry and explain the requirements for stealth models with high-scale supersymmetry breaking, in which the soft invisible particle is not a gravitino. We also discuss new and distinctive classes of stealth models that couple through a baryon portal or Z' gauge interactions. Finally, we present updated limits on stealth supersymmetry in light of current LHC searches.Comment: 45 pages, 16 figure

    LHC Coverage of RPV MSSM with Light Stops

    Full text link
    We examine the sensitivity of recent LHC searches to signatures of supersymmetry with R-parity violation (RPV). Motivated by naturalness of the Higgs potential, which would favor light third-generation squarks, and the stringent LHC bounds on spectra in which the gluino or first and second generation squarks are light, we focus on scenarios dominated by the pair production of light stops. We consider the various possible direct and cascade decays of the stop that involve the trilinear RPV operators. We find that in many cases, the existing searches exclude stops in the natural mass range and beyond. However, typically there is little or no sensitivity to cases dominated by UDD operators or LQD operators involving taus. We propose several ideas for searches which could address the existing gaps in experimental coverage of these signals.Comment: 41 pages, 12 figures; v2: included new searches (see footnote 10), minor corrections and improvement

    MFV Reductions of MSSM Parameter Space

    Full text link
    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan⁥ÎČ∌10\tan \beta \sim 10 with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for publication in JHE

    “New Alien Mediterranean Biodiversity Records” (November 2021)

    Get PDF
    This Collective Article includes records of 29 alien and cryptogenic species in the Mediterranean Sea, belonging to eight Phyla (Rhodophyta, Ochrophyta, Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata, and Chordata) and coming from 11 countries. Notes published here can be divided into three different categories: occupancy estimation for wide areas, new records for the Mediterranean Sea, and new records of species expanding within the Mediterranean Sea. The first category includes a visual survey held along the coastline of Peloponnese (Greece), which yielded records of 15 species. The second category includes the first Mediterranean records of the Coho salmon Oncorhynchus kisutch (Greece) and of the Arabian monocle bream Scolopsis ghanam (Tunisia). The third category includes new records for countries (Ganonema farinosum in Malta, Cassiopea andromeda in Libya, Cingulina isseli in Greece, Okenia picoensis in Italy, Callinectes sapidus in Slovenia, Charybdis cf. hellerii in Malta, Urocaridella pulchella in Cyprus, Ablennes hians and Aluterus monoceros in Lebanon, and Fistularia petimba in Greece and Lebanon), new records for MSFD areas or regional seas (Septifer cumingii in the Greek Ionian Sea and F. petimba in the Marmara Sea), and confirmation of old, doubtful, or spurious records/statements (Branchiomma luctuosum in Tunisia, Thalamita poissonii in the Saronikos Gulf, and Pterois miles in Albania). Noteworthy, the three new records of F. petimba suggest that it may soon spread further in the Mediterranean Sea, as already happened for its congeneric Fistularia commersonii. Distributional data reported here will help tracing colonization routes of alien species in the basin and may facilitate the development of mitigation measures

    The s ---> d gamma decay in and beyond the Standard Model

    Get PDF
    The New Physics sensitivity of the s ---> d gamma transition and its accessibility through hadronic processes are thoroughly investigated. Firstly, the Standard Model predictions for the direct CP-violating observables in radiative K decays are systematically improved. Besides, the magnetic contribution to epsilon prime is estimated and found subleading, even in the presence of New Physics, and a new strategy to resolve its electroweak versus QCD penguin fraction is identified. Secondly, the signatures of a series of New Physics scenarios, characterized as model-independently as possible in terms of their underlying dynamics, are investigated by combining the information from all the FCNC transitions in the s ---> d sector.Comment: 54 pages, 14 eps figure