61,583 research outputs found
The role of nonthermal electrons in the optical continuum of stellar flares
We explore the possibility that the continuum emission in stellar flares is
powered by nonthermal electrons accelerated during the flares. We compute the
continuum spectra from an atmospheric model for a dMe star, AD Leo, at its
quiescent state, when considering the nonthermal excitation and ionisation
effects by precipitating electron beams. The results show that if the electron
beam has an energy flux large enough, the U band brightening and, in
particular, the U-B colour are roughly comparable with observed values for a
typical large flare. Moreover, for electron beams with a moderate energy flux,
a decrease of the emission at the Paschen continuum appears. This can explain
at least partly the continuum dimming observed in some stellar flares. Adopting
an atmospheric model for the flaring state can further raise the continuum flux
but it yields a spectral colour incomparable with observations. This implies
that the nonthermal effects may play the chief role in powering the continuum
emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA
H∞ fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: The finite-horizon case
In this paper, the finite-horizon H∞ fault estimation problem is investigated for a class of uncertain nonlinear time-varying systems subject to multiple stochastic delays. The randomly occurring uncertainties (ROUs) enter into the system due to the random fluctuations of network conditions. The measured output is quantized by a logarithmic quantizer before being transmitted to the fault estimator. Also, successive packet dropouts (SPDs) happen when the quantized signals are transmitted through an unreliable network medium. Three mutually independent sets of Bernoulli-distributed white sequences are introduced to govern the multiple stochastic delays, ROUs and SPDs. By employing the stochastic analysis approach, some sufficient conditions are established for the desired finite-horizon fault estimator to achieve the specified H∞ performance. The time-varying parameters of the fault estimator are obtained by solving a set of recursive linear matrix inequalities. Finally, an illustrative numerical example is provided to show the effectiveness of the proposed fault estimation approach
- …
