295 research outputs found

    Tabulated Neutron Star Equations of State Modeled within the Chiral Mean Field Model

    Full text link
    In this special issue article, I review some of the accomplishments of the chiral mean field (CMF) model, which contains nucleon, hyperon, and quark degrees of freedom, and its applications to proto-neutron and neutron stars. I also present a set of equation of state and particle population tables built using the CMF model subject to physical constraints necessary to reproduce different environments, such as those present in cold neutron stars, core-collapse supernova explosions and different stages of compact star mergers.Comment: PASA special issue on the Neutron Stars, related to the Compstar conference in Warsa

    Compact Stars in Hadron and Quark-Hadron Models

    Full text link
    We investigate strongly interacting dense matter and neutron stars using a flavor-SU(3) approach based on a non-linear realization of chiral symmetry as well as a hadronic flavor-SU(2) parity-doublet model. We study chiral symmetry restoration and the equation of state of stellar matter and determine neutron star properties using different sets of degrees of freedom. Finally, we include quarks in the model approach. We show the resulting phase diagram as well as hybrid star solutions for this model.Comment: conference proceedings Iwara 200

    Parity Doublet Model applied to Neutron Stars

    Full text link
    The Parity doublet model containing the SU(2) multiplets including the baryons identified as the chiral partners of the nucleons is applied for neutron star matter. The chiral restoration is analyzed and the maximum mass of the star is calculated.Comment: Proceeding to the conference International Symposium on Exotic States of Nuclear Matte

    Modelling Hybrid Stars in Quark-Hadron Approaches

    Full text link
    The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated.Comment: Contribution to the EPJA Topical Issue on "Exotic Matter in Neutron Stars
    • …
    corecore