154 research outputs found
Einstein-Podolsky-Rosen paradox in twin images
Spatially entangled twin photons provide both promising resources for modern
quantum information protocols, because of the high dimensionality of transverse
entanglement, and a test of the Einstein-Podolsky-Rosen(EPR) paradox in its
original form of position versus impulsion. Usually, photons in temporal
coincidence are selected and their positions recorded, resulting in a priori
assumptions on their spatio-temporal behavior. Here, we record on two separate
electron-multiplying charge coupled devices (EMCCD) cameras twin images of the
entire flux of spontaneous down-conversion. This ensures a strict equivalence
between the subsystems corresponding to the detection of either position (image
or near-field plane) or momentum (Fourier or far-field plane). We report then
highest degree of paradox ever reported and show that this degree corresponds
to the number of independent degrees of freedom or resolution cells, of the
images
Optimising the signal-to-noise ratio in measurement of photon pairs with detector arrays
To evidence multimode spatial entanglement of spontaneous down-conversion,
detector arrays allow a full field measurement, without any a priori selection
of the paired photons. We show by comparing results of the recent literature
that electron-multiplying CCD (EMCCD) cameras allow, in the present state of
technology, the detection of quantum correlations with the best signal-to-noise
ratio (SNR), while intensified CCD (ICCD) cameras allow at best to identify
pairs. The SNR appears to be proportional to the square root of the number of
coherence cells in each image, or Schmidt number. Then, corrected estimates are
derived for extended coherence cells and not very low and not space-stationary
photon fluxes. Finally, experimental measurements of the SNR confirm our model
Real-time suppression of turbidity of biological tissues in motion by three-wave mixing phase-conjugation
International audienceWe show that phase-conjugation by three-wave mixing allows turbidity suppression through biological tissues with thicknesses up to 5 mm, at a near-infrared wavelength included in the therapeutic window. Because of the ultrafast character of the imaging process, a motion of the tissue, which mimics in vivo imaging, can be exploited to significantly improve the signal-to-noise ratio and the resolution of the restored images
Temporal ghost imaging with twin photons
We use twin photons generated by spontaneous parametric down conversion to perform temporal ghost imaging of a single time signal. The retrieval of a binary signal containing eight bits is performed with an error rate below 1%
Multi-imaging and Bayesian estimation for photon counting with EMCCD's
A multi-imaging strategy is proposed and experimentally tested to improve the
accuracy of photon counting with an electron multiplying charge-coupled device
(EMCCD), by taking into account the random nature of its on-chip gain and the
possibility of multiple photo-detection events on one pixel. This strategy is
based on Bayesian estimation on each image, with a priori information given by
the sum of the images. The method works even for images with large dynamic
range, with more improvement in the low light level areas. In these areas, two
thirds of the variance added by the EMCCD in a conventional imaging mode are
removed, making the physical photon noise predominant in the detected image.Comment: 19 page
Computational temporal ghost imaging
Ghost imaging is a fascinating process, where light interacting with an
object is recorded without resolution, but the shape of the object is
nevertheless retrieved, thanks to quantum or classical correlations of this
interacting light with either a computed or detected random signal. Recently,
ghost imaging has been extended to a time object, by using several thousands
copies of this periodic object. Here, we present a very simple device, inspired
by computational ghost imaging, that allows the retrieval of a single
non-reproducible, periodic or non-periodic, temporal signal. The reconstruction
is performed by a single shot, spatially multiplexed, measurement of the
spatial intensity correlations between computer-generated random images and the
images, modulated by a temporal signal, recorded and summed on a chip CMOS
camera used with no temporal resolution. Our device allows the reconstruction
of either a single temporal signal with monochrome images or
wavelength-multiplexed signals with color images
Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down conversion
We demonstrate Einstein-Podolsky-Rosen (EPR) entanglement by detecting purely
spatial quantum correlations in the near and far fields of spontaneous
parametric down-conversion generated in a type-2 beta barium borate crystal.
Full-field imaging is performed in the photon-counting regime with an
electron-multiplying CCD camera. The data are used without any postselection,
and we obtain a violation of Heisenberg inequalities with inferred quantities
taking into account all the biphoton pairs in both the near and far fields by
integration on the entire two-dimensional transverse planes. This ensures a
rigorous demonstration of the EPR paradox in its original position momentum
form
Modelization and optimized speckle detection scheme in photorefractive self-referenced acousto-optic imaging
International audienceA photorefractive BSO single crystal can be used for axially resolved acousto-optic imaging of thick scattering media in absence of a reference beam. This configuration renders the experimental setup easier to realize for imaging through thick scattering media with an improved optical etendue. We present here a model and simulations that explains these results. It is based on the spatial heterogeneity of the speckle pattern incident on the crystal. Optimization of the detector position and of the speckle grain size is confirmed by the model
- …