2 research outputs found
The toxicity of crude 4-methylcyclohexanemethanol (MCHM): review of experimental data and results of predictive models for its constituents and a putative metabolite
<div><p></p><p>Crude 4-methylcyclohexanemethanol (MCHM) is an industrial solvent used to clean coal. Approximately 10 000 gallons of a liquid mixture containing crude MCHM were accidently released into the Elk River in West Virginia in January 2014. Because of the proximity to a water treatment facility, the contaminated water was distributed to approximately 300 000 residents. In this review, experimental data and computational predictions for the toxicity for crude MCHM, distilled MCHM, its other components and its putative metabolites are presented. Crude MCHM, its other constituents and its metabolites have low to moderate acute and subchronic oral toxicity. Crude MCHM has been shown not to be a skin sensitizer below certain doses, indicating that at plausible human exposures it does not cause an allergic response. Crude MCHM and its constituents cause slight to moderate skin and eye irritation in rodents at high concentrations. These chemicals are not mutagenic and are not predicted to be carcinogenic. Several of the constituents were predicted through modeling to be possible developmental toxicants; however, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedicarboxylic acid and dimethyl 1,4-cyclohexanedicarboxylate did not demonstrate developmental toxicity in rat studies. Following the spill, the Centers for Disease Control and Prevention recommended a short-term health advisory level of 1 ppm for drinking water that it determined was unlikely to be associated with adverse health effects. Crude MCHM has an odor threshold lower than 10 ppb, indicating that it could be detected at concentrations at least 100-fold less than this risk criterion. Collectively, the findings and predictions indicate that crude MCHM poses no apparent toxicological risk to humans at 1 ppm in household water.</p></div
Total cobalt determination in human blood and synovial fluid using inductively coupled plasma-mass spectrometry: method validation and evaluation of performance variables affecting metal hip implant patient samples
<div><p>Inductively coupled plasma with mass spectrometric detection (ICP-MS) has been used for clinical analysis of cobalt (Co) due to its sensitivity and specificity; however, media-specific validation studies are lacking. This study provides data on performance variables affecting differences between selected analytical platforms (Perkin Elmer and Agilent), tissue sample preparation, storage, and interferences affecting measurements in whole blood, serum, and synovial fluid. The limits of detection (LOD) range from 0.2–0.5 µg/L in serum and synovial fluid, and 0.6–1.7 µg Co/L in whole blood. The Agilent platform with collision reaction cell is more sensitive, while the Perkin Elmer platform with dynamic reaction cell demonstrates more polyatomic interferences near the LOD for serum and whole blood. Split sample analysis showed good accuracy, precision, and reproducibility between serum Co measurements using acid digestion or detergent dilution preparations for persons with metal hip implants or following supplement intake. The results demonstrated reliability of the ICP-MS methodology across the two analytical platforms and between two commercial laboratories for Co concentrations above 5 µg Co/L, but digestion procedures and polyatomic interferences may affect measurements in some media at lower concentrations. These studies validate the described ICP-MS methodology for clinical purposes with precautions at low cobalt concentrations (<5 µg Co/L).</p></div