526 research outputs found

    A Berry-Esseen theorem for Feynman-Kac and interacting particle models

    Get PDF
    In this paper we investigate the speed of convergence of the fluctuations of a general class of Feynman-Kac particle approximation models. We design an original approach based on new Berry-Esseen type estimates for abstract martingale sequences combined with original exponential concentration estimates of interacting processes. These results extend the corresponding statements in the classical theory and apply to a class of branching and genealogical path-particle models arising in nonlinear filtering literature as well as in statistical physics and biology.Comment: Published at http://dx.doi.org/10.1214/105051604000000792 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Genealogical particle analysis of rare events

    Full text link
    In this paper an original interacting particle system approach is developed for studying Markov chains in rare event regimes. The proposed particle system is theoretically studied through a genealogical tree interpretation of Feynman--Kac path measures. The algorithmic implementation of the particle system is presented. An estimator for the probability of occurrence of a rare event is proposed and its variance is computed, which allows to compare and to optimize different versions of the algorithm. Applications and numerical implementations are discussed. First, we apply the particle system technique to a toy model (a Gaussian random walk), which permits to illustrate the theoretical predictions. Second, we address a physically relevant problem consisting in the estimation of the outage probability due to polarization-mode dispersion in optical fibers.Comment: Published at http://dx.doi.org/10.1214/105051605000000566 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Interacting Markov chain Monte Carlo methods for solving nonlinear measure-valued equations

    Get PDF
    We present a new class of interacting Markov chain Monte Carlo algorithms for solving numerically discrete-time measure-valued equations. The associated stochastic processes belong to the class of self-interacting Markov chains. In contrast to traditional Markov chains, their time evolutions depend on the occupation measure of their past values. This general methodology allows us to provide a natural way to sample from a sequence of target probability measures of increasing complexity. We develop an original theoretical analysis to analyze the behavior of these iterative algorithms which relies on measure-valued processes and semigroup techniques. We establish a variety of convergence results including exponential estimates and a uniform convergence theorem with respect to the number of target distributions. We also illustrate these algorithms in the context of Feynman-Kac distribution flows.Comment: Published in at http://dx.doi.org/10.1214/09-AAP628 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonasymptotic analysis of adaptive and annealed Feynman-Kac particle models

    Full text link
    Sequential and quantum Monte Carlo methods, as well as genetic type search algorithms can be interpreted as a mean field and interacting particle approximations of Feynman-Kac models in distribution spaces. The performance of these population Monte Carlo algorithms is strongly related to the stability properties of nonlinear Feynman-Kac semigroups. In this paper, we analyze these models in terms of Dobrushin ergodic coefficients of the reference Markov transitions and the oscillations of the potential functions. Sufficient conditions for uniform concentration inequalities w.r.t. time are expressed explicitly in terms of these two quantities. We provide an original perturbation analysis that applies to annealed and adaptive Feynman-Kac models, yielding what seems to be the first results of this kind for these types of models. Special attention is devoted to the particular case of Boltzmann-Gibbs measures' sampling. In this context, we design an explicit way of tuning the number of Markov chain Monte Carlo iterations with temperature schedule. We also design an alternative interacting particle method based on an adaptive strategy to define the temperature increments. The theoretical analysis of the performance of this adaptive model is much more involved as both the potential functions and the reference Markov transitions now depend on the random evolution on the particle model. The nonasymptotic analysis of these complex adaptive models is an open research problem. We initiate this study with the concentration analysis of a simplified adaptive models based on reference Markov transitions that coincide with the limiting quantities, as the number of particles tends to infinity.Comment: Published at http://dx.doi.org/10.3150/14-BEJ680 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Sequential Monte Carlo Methods for Option Pricing

    Full text link
    In the following paper we provide a review and development of sequential Monte Carlo (SMC) methods for option pricing. SMC are a class of Monte Carlo-based algorithms, that are designed to approximate expectations w.r.t a sequence of related probability measures. These approaches have been used, successfully, for a wide class of applications in engineering, statistics, physics and operations research. SMC methods are highly suited to many option pricing problems and sensitivity/Greek calculations due to the nature of the sequential simulation. However, it is seldom the case that such ideas are explicitly used in the option pricing literature. This article provides an up-to date review of SMC methods, which are appropriate for option pricing. In addition, it is illustrated how a number of existing approaches for option pricing can be enhanced via SMC. Specifically, when pricing the arithmetic Asian option w.r.t a complex stochastic volatility model, it is shown that SMC methods provide additional strategies to improve estimation.Comment: 37 Pages, 2 Figure

    Sequential Monte Carlo with Highly Informative Observations

    Full text link
    We propose sequential Monte Carlo (SMC) methods for sampling the posterior distribution of state-space models under highly informative observation regimes, a situation in which standard SMC methods can perform poorly. A special case is simulating bridges between given initial and final values. The basic idea is to introduce a schedule of intermediate weighting and resampling times between observation times, which guide particles towards the final state. This can always be done for continuous-time models, and may be done for discrete-time models under sparse observation regimes; our main focus is on continuous-time diffusion processes. The methods are broadly applicable in that they support multivariate models with partial observation, do not require simulation of the backward transition (which is often unavailable), and, where possible, avoid pointwise evaluation of the forward transition. When simulating bridges, the last cannot be avoided entirely without concessions, and we suggest an epsilon-ball approach (reminiscent of Approximate Bayesian Computation) as a workaround. Compared to the bootstrap particle filter, the new methods deliver substantially reduced mean squared error in normalising constant estimates, even after accounting for execution time. The methods are demonstrated for state estimation with two toy examples, and for parameter estimation (within a particle marginal Metropolis--Hastings sampler) with three applied examples in econometrics, epidemiology and marine biogeochemistry.Comment: 25 pages, 11 figure

    A Backward Particle Interpretation of Feynman-Kac Formulae

    Get PDF
    We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results w.r.t. the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. We also illustrate these results in the context of computational physics and imaginary time Schroedinger type partial differential equations, with a special interest in the numerical approximation of the invariant measure associated to hh-processes
    • …
    corecore