316 research outputs found

    Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics

    Get PDF
    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented

    Lasers and Electro-Optics for Ground-Based Astronomy

    Get PDF
    To expand their science reach, terrestrial observatories have long demanded innovative optical technologies. Today, photonics enabling the active control, compensation, and detection of astronomical light are once again opening new vistas on our Universe

    Optimal LGS pointing with faint tip-tilt NGS

    Get PDF
    Experience with the current generation of astronomical single laser guide star (LGS) adaptive optics (AO) systems has demonstrated system performance that is often limited by residual tip-tilt errors induced by the paucity of bright tip-tilt natural guide stars (NGS). To overcome this limitation, we are developing a new generation of tip-tilt sensors that will operate at near-infrared wavelengths where the NGS is sharpened to the diffraction limit. To optimize performance, single LGS AO systems utilizing sharpened tip-tilt NGS should generally not point their LGS directly toward their science target. Rather, optimal performance for wide sky coverage is obtained by offsetting LGS pointing along a radius connecting the science target and the tip-tilt NGS. We demonstrate that determination of the jointly optimized LGS pointing angle and tip-tilt wavefront sensor (WFS) integration time can improve performance metrics by factors of several, particularly for faintest NGS operation. We find the LGS offset should be as much as 1/2 the distance to the NGS to maximize Strehl ratio at near-infrared wavelengths and ≈ 1/4 the distance to the NGS to maximize ensquared energy, with lesser off-pointing for brighter NGS. Future AO systems may benefit from predictive determination of optimal LGS offsetting, based upon changing atmospheric conditions and observational geometries

    Exoearth study with TMT

    Get PDF
    Ground-based optical and infrared telescopes with diameters of 30-meters or greater have theoretical potential to study objects at the contrast levels predicted for reflecting terrestrial planets in orbits within the habitable zone of nearby stars. Despite the corrupting effect of the Earth's turbulent atmosphere, the theoretical limits can be approached through the use of an adaptive optics (AO) system optimized for high contrast operating at near-infrared wavelength. With proper flow-down of functional requirements and contrast-optimized choice of site, the highly segmented. Thirty Meter Telescope (TMT) could study scores of nearby star systems, to apparent magnitude 5, for resident terrestrial planets at spectral resolution R = 5 in either visible or near-infrared band, and a few systems to magnitude 3, at R = 20 in the infrared. Even at low spectral resolution, a wealth of information could be obtained by direct imaging of exoearths, including determination of the presence of an atmosphere, clouds, equilibrium temperature, tidal locking, and the presence of non-Earth-like atmospheric chemistry such as steam lines. Our own atmosphere, however, limits the study of exoearth biological markers, unless these planets have environmental conditions and chemical composition significantly different from our own

    Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm

    Get PDF
    We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone with a direct residual error updating procedure or used with the preconditioned conjugate-gradient method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering, using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the performance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, multigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics system

    Fast wave-front reconstruction by solving the Sylvester equation with the alternating direction implicit method

    Get PDF
    Large degree-of-freedom real-time adaptive optics (AO) control requires reconstruction algorithms that are computationally efficient and readily parallelized for hardware implementation. In particular, we find the wave-front reconstruction for the Hudgin and Fried geometry can be cast into a form of the well-known Sylvester equation using the Kronecker product properties of matrices. We derive the filters and inverse filtering formulas for wave-front reconstruction in two-dimensional (2-D) Discrete Cosine Transform (DCT) domain for these two geometries using the Hadamard product concept of matrices and the principle of separable variables. We introduce a recursive filtering (RF) method for the wave-front reconstruction on an annular aperture, in which, an imbedding step is used to convert an annular-aperture wave-front reconstruction into a squareaperture wave-front reconstruction, and then solving the Hudgin geometry problem on the square aperture. We apply the Alternating Direction Implicit (ADI) method to this imbedding step of the RF algorithm, to efficiently solve the annular-aperture wave-front reconstruction problem at cost of order of the number of degrees of freedom, O(n). Moreover, the ADI method is better suited for parallel implementation and we describe a practical real-time implementation for AO systems of order 3,000 actuators

    Simulations of adaptive optics systems on 30-m-class telescopes

    Get PDF
    In this paper we describe the development of a C++ class library for the simulation of adaptive optics systems. This library includes functionality to simulate the propagation of electromagnetic waves through a randomly generated turbulent atmosphere and through an adaptive optical system. It includes support for extended emitters and laser guide stars, and for different types of wavefront sensors and reconstructors. The library also aims to support parallelization of simulations across symmetric multiprocessor and cluster supercomputers

    Design considerations for CELT adaptive optics

    Get PDF
    California Institute of Technology and University of California have begun conceptual design studies for a new telescope for astronomical research at visible and infrared wavelengths. The California Extremely Large Telescope (CELT) is currently envisioned as a filled-aperture, steerable, segmented telescope of approximately 30 m diameter. The key to satisfying many of the science goals of this observatory is the availability of diffraction-limited wavefront control. We describe potential observing modes of CELT, including a discussion of the several major outstanding AO system architectural design issues to be resolved prior to the initiation of the detailed design of the adaptive optics capability

    Optimized Wide-Field Survey Telescope Using Adaptive Optics

    Get PDF
    We describe a new technique for ground-based telescopic surveys that can deliver a wide field of view and nearly diffraction-limited image quality. We discuss a very low cost, yet sensitive and efficient, concept to perform science previously considered from space. For ground-based telescopes with small D/r0 (aperture over turbulence cell diameter) a significant improvement in point source sensitivity can be achieved with tip-tilt correction only. However, the solid angle over which image motion is constant is typically less than an arcminute. To achieve tip-tilt correction over a larger field we propose to use a high order adaptive optics system where one pupil sub-aperture now corresponds to one isokinetic patch. The high order deformable mirror is conjugated to an atmospheric height where the tip-tilt "beams" separate from each other while the overall tip-tilt can be taken out with a tip-tilt secondary mirror conjugated to low height. One source per square arcminute with V ≤ 18^m is required for the determination of the image motion, allowing a sky coverage of more than 50%. The improvement over seeing limited observations is maximal at D/r_0 ≈ 4 with a S/N improvement of a factor of four. An inexpensive system with 500 actuators can correct a field of view of 0.4 × 0.4 deg^2. It is thus well-suited for searches of point sources, e.g. high-z SN Ia or other transient phenomena

    Design and fabrication of electrostatic actuators with corrugated membranes for MEMS deformable mirror in space

    Get PDF
    A novel Microelectromechanical Systems (MEMS) deformable mirror (DM) technology for large, light weight, segmented space telescopes is being proposed. This technology is reported to provide an unprecedented imaging capability in a visible and near infrared spectral range. The MEMS-DM proposed in this paper consists of a continuous membrane mirror supported by electrostatic actuators with pixel-to-pixel spacing as small as 200 micrometer. An array of 4 X 4 electrostatic actuators for the DM has been successfully fabricated by a new membrane transfer technique. The fabricated actuator membrane has been characterized by using an optical surface profiler. The actuator shows a vertical deflection of 0.37 micrometer at 55 V. This device can also address requirements for smaller size and high resolution applications involving optical transmission through aberrating mediums such as imaging and optical communications through atmospheres, high resolution biometric retina signatures through the eye and endoscopic investigation of tissues and organs
    corecore