1,177 research outputs found

    Inhibiting Multiple Deubiquitinases to Reduce Androgen Receptor Expression in Prostate Cancer Cells

    Get PDF
    Prostate cancer (PCa), a leading cause of cancer-related death in men, becomes resistant to androgen deprivation therapy by inducing androgen receptor (AR) activity, which is known as castration-resistant PCa (CRPC). Enzalutamide is an approved drug that inhibits AR activity and increases overall survival. However, resistance to enzalutamide develops rapidly often by increasing AR activity, suggesting that new therapies are required for CRPC. We investigated whether betulinic acid (BA), a small molecule from plants that inhibits multiple deubiquitinases (DUBs), reduces AR, and selectively kills PCa cells, can provide an adjuvant strategy for CRPC. Our data indicated that BA reduced AR protein stability and mRNA expression, making it an attractive agent for CRPC. BA decreased AR mRNA possibly by inhibiting a histone 2A DUB thereby increasing ubiquitinated histone 2A, a transcriptional repressor. We identified multiple and specific DUBs inhibited by BA either in PCa cells or using recombinant DUBs. Similar results were obtained using another multi-DUB inhibitor WP1130, suggesting that these DUB inhibitors can decrease AR expression and increase PCa-specific death. Our results also suggest that combining multi-DUB inhibitors BA or WP1130 with enzalutamide may provide a novel strategy for CRPC by further decreasing AR expression and increasing apoptotic cell death.</p

    The MALDI TOF E2/E3 ligase assay as universal tool for drug discovery in the ubiquitin pathway

    Get PDF
    AbstractIn many diseases, components of the ubiquitin system - such as E2/E3 ligases and deubiquitylases - are dysregulated. The ubiquitin system has therefore become an emergent target for the treatment of a number of diseases, including cancer, neurodegeneration and autoimmunity. Despite of the efforts in this field, primary screenings of compound libraries to individuate new potential therapeutic molecules targeting the ubiquitin pathway have been strongly limited by the lack of robust and fast high-throughput assays. Here we report the first label-free high-throughput screening (HTS) assay for ubiquitin E2 conjugating enzymes and E3 ligases based on Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI TOF) mass spectrometry. The MALDI TOF E2/E3 assay allows us to test E2 conjugating enzymes and E3 ligases for their ubiquitin transfer activity, to identify E2/E3 active pairs, inhibitor potency and specificity and to screen compound librariesin vitrowithout synthesis of chemical or fluorescent probes. We demonstrate that the MALDI TOF E2/E3 assay is a universal tool for drug discovery screening in the ubiquitin pathway as it is suitable for working with all E3 ligase families and requires a reduced amount of reagents, compared to standard biochemical assays.</jats:p

    Deubiquitinating enzyme amino acid profiling reveals a class of ubiquitin esterases

    Get PDF
    The reversibility of ubiquitination by the action of deubiquitinating enzymes (DUBs) serves as an important regulatory layer within the ubiquitin system. Approximately 100 DUBs are encoded by the human genome, and many have been implicated with pathologies, including neurodegeneration and cancer. Non-lysine ubiquitination is chemically distinct, and its physiological importance is emerging. Here, we couple chemically and chemoenzymatically synthesized ubiquitinated lysine and threonine model substrates to a mass spectrometry-based DUB assay. Using this platform, we profile two-thirds of known catalytically active DUBs for threonine esterase and lysine isopeptidase activity and find that most DUBs demonstrate dual selectivity. However, with two anomalous exceptions, the ovarian tumor domain DUB class demonstrates specific (iso)peptidase activity. Strikingly, we find the Machado–Joseph disease (MJD) class to be unappreciated non-lysine DUBs with highly specific ubiquitin esterase activity rivaling the efficiency of the most active isopeptidases. Esterase activity is dependent on the canonical catalytic triad, but proximal hydrophobic residues appear to be general determinants of non-lysine activity. Our findings also suggest that ubiquitin esters have appreciable cellular stability and that non-lysine ubiquitination is an integral component of the ubiquitin system. Its regulatory sophistication is likely to rival that of canonical ubiquitination.We thank Axel Knebel, Richard Ewan, Clare Johnson, and Daniel Fountaine from the Medical Research Council (MRC) Protein Production and Assay Development team, and MRC Reagents and Services, who all contributed to the generation of protein reagents required for the MALDI-TOF DUB assay platform. We thank Ronald Hay for provision of the plasmid encoding the constitutively active RNF4 E3 ligase. This work was funded by the United Kingdom MRC (MC_UU_12016/8), the Biotechnology and Biological Sciences Research Council (BB/P003982/1), and The Michael J. Fox Foundation (12756). We also acknowledge pharmaceutical companies supporting the Division of Signal Transduction Therapy (Boehringer-Ingelheim, GlaxoSmithKline, and Merck KGaA).Peer reviewe

    Discovery and characterization of non-canonical E2 conjugating enzymes

    Get PDF
    E2 conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation is fundamental for maintaining cellular homeostasis and impacts almost all cellular process. By interacting with multiple E3 ligases, E2s direct the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a post-translational modification that specifically targets lysine side chains (canonical ubiquitylation). We used MALDI-TOF Mass Spectrometry to discover and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We employed protein modelling and prediction tools to identify the catalytic determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results join a stream of recent literature that challenges the definition of ubiquitylation as an exquisitely lysine-specific modification and provide crucial insights into the missing E2 element responsible for non-canonical ubiquitylation.<br/

    Comprehensive approach to study branched ubiquitin chains reveals roles for K48-K63 branches in VCP/p97-related processes

    Get PDF
    Branched ubiquitin (Ub) chains make up a significant proportion of Ub polymers in human cells and are formed when two or more sites on a single Ub molecule are modified with Ub creating bifurcated architectures. Despite their abundance, we have a poor understanding of the cellular functions of branched Ub signals that stems from a lack of facile tools and methods to study them. Here we develop a comprehensive pipeline to define branched Ub function, using K48-K63-branched chains as a case study. We discover branch-specific binders and, by developing a method that monitors cleavage of linkages within complex polyUb, we discover the VCP/p97-associated ATXN3, and MINDY family deubiquitinases to act as debranching enzymes. By engineering and utilizing a branched K48-K63-Ub chain-specific nanobody, we reveal roles for these chains in VCP/p97-related processes. In summary, we provide a blueprint to investigate branched Ub function that can be readily applied to study other branched chain types.<br/

    Design and high-throughput implementation of MALDI-TOF/MS-based assays for Parkin E3 ligase activity

    Get PDF
    Parkinson’s disease (PD) is a progressive neurological disorder that manifests clinically as alterations in movement as well as multiple non-motor symptoms including but not limited to cognitive and autonomic abnormalities. Loss-of-function mutations in the gene encoding the ubiquitin E3 ligase Parkin are causal for familial and juvenile PD. Among several therapeutic approaches being explored to treat or improve the prognosis of patients with PD, the use of small molecules able to reinstate or boost Parkin activity represents a potential pharmacological treatment strategy. A major barrier is the lack of high-throughput platforms for the robust and accurate quantification of Parkin activity in vitro. Here, we present two different and complementary Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF/MS)-based approaches for the quantification of Parkin E3 ligase activity in vitro. Both approaches are scalable for high-throughput primary screening to facilitate the identification of Parkin modulators

    Discovery and characterization of noncanonical E2-conjugating enzymes

    Get PDF
    E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.</p

    Discovery and characterization of noncanonical E2-conjugating enzymes

    Get PDF
    E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.</p

    VCP/p97-associated proteins are binders and debranching enzymes of K48–K63-branched ubiquitin chains

    Get PDF
    Branched ubiquitin (Ub) chains constitute a sizable fraction of Ub polymers in human cells. Despite their abundance, our understanding of branched Ub function in cell signaling has been stunted by the absence of accessible methods and tools. Here we identify cellular branched-chain-specific binding proteins and devise approaches to probe K48–K63-branched Ub function. We establish a method to monitor cleavage of linkages within complex Ub chains and unveil ATXN3 and MINDY as debranching enzymes. We engineer a K48–K63 branch-specific nanobody and reveal the molecular basis of its specificity in crystal structures of nanobody-branched Ub chain complexes. Using this nanobody, we detect increased K48–K63-Ub branching following valosin-containing protein (VCP)/p97 inhibition and after DNA damage. Together with our discovery that multiple VCP/p97-associated proteins bind to or debranch K48–K63-linked Ub, these results suggest a function for K48–K63-branched chains in VCP/p97-related processes
    • …
    corecore