956 research outputs found

    Death of Stellar Baryonic Dark Matter

    Get PDF
    The nature of the dark matter in the haloes of galaxies is one of the outstanding questions in astrophysics. All stellar candidates, until recently thought to be likely baryonic contributions to the Halo of our Galaxy, are shown to be ruled out. Faint stars and brown dwarfs are found to constitute only a few percent of the mass of the Galaxy. Stellar remnants, including white dwarfs and neutron stars, are shown to be very constrained as well. High energy gamma-rays observed in HEGRA data place the strongest constraints, ΩWD<3×10−3h−1\Omega_{WD} < 3 \times 10^{-3} h^{-1}, where hh is the Hubble constant in units of 100 km s−1^{-1} Mpc−1^{-1}. Hence one is left with several unanswered questions: 1) What are MACHOs seen in microlensing surveys? 2) What is the dark matter in our Galaxy? Indeed a nonbaryonic component in the Halo seems to be required.Comment: 6 pages ps fil

    Massive Compact Halo Objects Viewed from a Cosmological Perspective: Contribution to the Baryonic Mass Density of the Universe

    Get PDF
    [Abridged] We estimate the contribution of Massive Compact Halo Objects (Machos) and their stellar progenitors to the mass density of the Universe. If the Machos that have been detected reside in the Halo of our Galaxy, then a simple extrapolation of the Galactic population (out to 50 kpc) of Machos to cosmic scales gives a cosmic density \rho_{Macho} = (1-5) \times 10^9 h \msun \Mpc^{-3}, which in terms of the critical density corresponds to ΩMacho=(0.0036−0.017)h−1\Omega_{Macho}=(0.0036-0.017) h^{-1}. Such a mass density is comparable to the baryon density implied by Big Bang Nucleosynthesis. If we take the central values of the estimates, then Machos dominate the baryonic content of the Universe today, with ΩMacho/ΩBaryon∼0.7h\Omega_{Macho}/\Omega_{Baryon} \sim 0.7 h. However, the cumulative uncertainties in the density determinations only require that ΩMacho/ΩBaryon≥1/6hfgal\Omega_{Macho}/\Omega_{Baryon} \geq 1/6 h f_{gal}, where the fraction of galaxies that contain Machos fgal>0.17f_{gal} > 0.17, and hh is the Hubble constant in units of 100 km s−1^{-1} Mpc−1^{-1}. Our best estimate for ΩMacho\Omega_{Macho} is hard to reconcile with the current best estimates of the baryonic content of the intergalactic medium indicated by measurements of the Lyman-α\alpha forest. We explore the addition constraints that arise if the Machos are white dwarfs as suggested by the present microlensing data. We discuss the challenges this scenario presents at both the local and cosmic scales, emphasizing in particular the constraints on the required mass budget and nucleosynthesis products (particularly carbon).Comment: 18 pages, LaTeX, uses AASTeX macros. In press, New Astronomy (submitted Jan. 20, 1998

    No nearby counterparts to the moving objects in the Hubble Deep Field

    Get PDF
    Ibata et al (1999) have recently discovered faint, moving objects in the Hubble Deep Field. The quantity, magnitudes and proper motions of these objects are consistent with old white dwarfs making up the Galactic dark halo. We review a number of ground-based proper motion surveys in which nearby dark halo white dwarfs might be present, if they have the colours and absolute magnitudes proposed. No such objects have been found, whereas we argue here that several times more would be expected than in the Hubble Deep Field. We conclude it is unlikely that hydrogen atmosphere white dwarfs make up a significant fraction of the halo dark matter. No limits can be placed yet on helium atmosphere dwarfs from optical searches.Comment: 7 pages, 4 figures, MNRAS LaTeX forma

    Analysis of a Hubble Space Telescope Search for Red Dwarfs: Limits on Baryonic Matter in the Galactic Halo

    Full text link
    We re-examine a deep {\it Hubble Space Telescope} pencil-beam search for red dwarfs, stars just massive enough to burn Hydrogen. The authors of this search (Bahcall, Flynn, Gould \& Kirhakos 1994) found that red dwarfs make up less than 6\% of the galactic halo. First, we extrapolate this result to include brown dwarfs, stars not quite massive enough to burn hydrogen; we assume a 1/M1/{\cal M} mass function. Then the total mass of red dwarfs and brown dwarfs is ≤\leq18\% of the halo. This result is consistent with microlensing results assuming a popular halo model. However, using new stellar models and parallax observations of low mass, low metallicity stars, we obtain much tighter bounds on low mass stars. We find the halo red dwarf density to be <1%<1\% of the halo, while our best estimate of this value is 0.14-0.37\%. Thus our estimate of the halo mass density of red dwarfs drops to 16-40 times less than the reported result of Bahcall et al (1994). For a 1/M1/{\cal M} mass function, this suggests a total density of red dwarfs and brown dwarfs of ∼\sim0.25-0.67\% of the halo, \ie , (0.9-2.5)\times 10^9\msun out to 50 kpc. Such a low result would conflict with microlensing estimates by the \macho\ group (Alcock \etal 1995a,b).Comment: 13 pages, 2 figures. Figure one only available via fax or snail-mail To be published in ApJL. fig. 2 now available in postscript. Some minor changes in dealing with disk forground. Some cosmetic changes. Updated reference

    Magnitude bias of microlensed sources towards the Large Magellanic Cloud

    Get PDF
    There are lines of evidence suggesting that some of the observed microlensing events in the direction of the Large Magellanic Cloud (LMC) are caused by ordinary star lenses as opposed to dark Machos in the Galactic halo. Efficient lensing by ordinary stars generally requires the presence of one or more additional concentrations of stars along the line of sight to the LMC disk. If such a population behind the LMC disk exists, then the source stars (for lensing by LMC disk objects) will be drawn preferentially from the background population and will show systematic differences from LMC field stars. One such difference is that the (lensed) source stars will be farther away than the average LMC field stars, and this should be reflected in their apparent baseline magnitudes. We focus on red clump stars: these should appear in the color-magnitude diagram at a few tenths of a magnitude fainter than the field red clump. Suggestively, one of the two near-clump confirmed events, MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.Comment: To appear in ApJ Letters. Shortened to match the accepted version, 8 pages plus 1 ps figur
    • …
    corecore