1,738 research outputs found

    Supersymmetry for Gauged Double Field Theory and Generalised Scherk-Schwarz Reductions

    Get PDF
    Previous constructions of supersymmetry for double field theory have relied on the so called strong constraint. In this paper, the strong constraint is relaxed and the theory is shown to possess supersymmetry once the generalised Scherk-Schwarz reduction is imposed. The equivalence between the generalised Scherk-Schwarz reduced theory and the gauged double field theory is then examined in detail for the supersymmetric theory. As a byproduct we write the generalised Killing spinor equations for the supersymmetric double field theory.Comment: 29 pages, LateX, v2 typos fixed and some improved discussion, version as in Journa

    The string partition function in Hull's doubled formalism

    Get PDF
    T-duality is one of the essential elements of string theory. Recently, Hull has developed a formalism where the dimension of the target space is doubled so as to make T-duality manifest. This is then supplemented with a constraint equation that allows the connection to the usual string sigma model. This paper analyses the partition function of the doubled formalism by interpreting the constraint equation as that of a chiral scalar and then using holomorphic factorisation techniques to determine the partition function. We find there is quantum equivalence to the ordinary string once the topological interaction term is included.Comment: 16 pages, latex, v2 typos corrected, v3 some comments adde

    Branes are Waves and Monopoles

    Get PDF
    In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d; d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.Comment: 32 pages, Latex, v2, typos correcte

    Duality Symmetric String and M-Theory

    Full text link
    We review recent developments in duality symmetric string theory. We begin with the world sheet doubled formalism which describes strings in an extended space time with extra coordinates conjugate to winding modes. This formalism is T-duality symmetric and can accommodate non-geometric T-fold backgrounds which are beyond the scope of Riemannian geometry. Vanishing of the conformal anomaly of this theory can be interpreted as a set of spacetime equations for the background fields. These equations follow from an action principle that has been dubbed Double Field Theory (DFT). We review the aspects of generalised geometry relevant for DFT. We outline recent extensions of DFT and explain how, by relaxing the so-called strong constraint with a Scherk Schwarz ansatz, one can obtain backgrounds that simultaneously depend on both the regular and T-dual coordinates. This provides a purely geometric higher dimensional origin to gauged supergravities that arise from non-geometric compactification. We then turn to M-theory and describe recent progress in formulating an E_{n(n)} U-duality covariant description of the dynamics. We describe how spacetime may be extended to accommodate coordinates conjugate to brane wrapping modes and the construction of generalised metrics in this extend space that unite the bosonic fields of supergravity into a single object. We review the action principles for these theories and their novel gauge symmetries. We also describe how a Scherk Schwarz reduction can be applied in the M-theory context and the resulting relationship to the embedding tensor formulation of maximal gauged supergravities.Comment: Review article. 122 pages. V2 Published Version in Physics Report

    The gauge structure of generalised diffeomorphisms

    Full text link
    We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.Comment: 24 pp., plain tex, 1 figure. v2: minor changes, including a few added ref

    Membranes with a boundary

    Full text link
    We investigate the recently developed theory of multiple membranes. In particular, we consider open membranes, i.e. the theory defined on a membrane world volume with a boundary. We first restrict our attention to the gauge sector of the theory. We obtain a boundary action from the Chern-Simons terms. Secondly, we consider the addition of certain boundary terms to various Chern-Simons theories coupled to matter. These terms ensure the full bulk plus boundary action has the correct amount of supersymmetry. For the ABJM model, this construction motivates the inclusion of a boundary quartic scalar potential. The boundary dynamics obtained from our modified theory produce Basu-Harvey type equations describing membranes ending on a fivebrane. The ultimate goal of this work is to throw light on the theory of fivebranes using the theory of open membranes.Comment: 48 pages, Latex, v2 references adde

    Confinement and the AdS/CFT Correspondence

    Get PDF
    We study the thermodynamics of the confined and unconfined phases of superconformal Yang-Mills in finite volume and at large N using the AdS/CFT correspondence. We discuss the necessary conditions for a smooth phase crossover and obtain an N-dependent curve for the phase boundary.Comment: 12 pages, 1 figure, RevTe
    corecore