6 research outputs found
A critical analysis on the sensitivity enhancement of surface plasmon resonance sensors with graphene
The use of graphene in surface plasmon resonance sensors, covering a metallic (plasmonic) film, has a number of demonstrated advantages, such as protecting the film against corrosion/oxidation and facilitating the introduction of functional groups for selective sensing. Recently, a number of works have claimed that few-layer graphene can also increase the sensitivity of the sensor. However, graphene was treated as an isotropic thin film, with an out-of-plane refractive index that is identical to the in-plane index. Here, we critically examine the role of single and few layers of graphene in the sensitivity enhancement of surface plasmon resonance sensors. Graphene is introduced over the metallic film via three different descriptions: as an atomic-thick two-dimensional sheet, as a thin effective isotropic material (same conductivity in the three coordinate directions), and as an non-isotropic layer (different conductivity in the perpendicular direction to the two-dimensional plane). We find that only the isotropic layer model, which is known to be incorrect for the optical modeling of graphene, provides sizable sensitivity increases, while the other, more accurate, models lead to a negligible contribution to the sensitivity.This work was funded by FAPESP (grant nos. 2018/07276-5 and 2018/25339-4), the Brazilian Nanocarbon Institute of Science and Technology (INCT/Nanocarbon), and CAPES-PrInt (grant no. 88887.310281/2018-00). N.M.R.P. acknowledges PORTUGAL 2020, FEDER, and the FCT through projects: UIDB/04650/2020 strategic project, QML-HEP-CERN/FIS-COM/0004/2021 and PTDC/FIS-MAC/2045/2021, and the European Commission through the project GrapheneDriven Revolutions in ICT and Beyond (Ref. No. 881603, CORE 3).https://www.mdpi.com/2079-4991/12/15/256
Impact of complex adatom-induced interactions on quantum spin Hall phases
Adsorbate engineering offers a seemingly simple approach to tailor spin-orbit interactions in atomically thin materials and thus to unlock the much sought-after topological insulating phases in two dimensions. However, the observation of an Anderson topological transition induced by heavy adatoms has proved extremely challenging despite substantial experimental efforts. Here, we present a multiscale approach combining advanced first-principles methods and accurate single-electron descriptions of adatom-host interactions using graphene as a prototypical system. Our study reveals a surprisingly complex structure in the interactions mediated by random adatoms, including hitherto neglected hopping processes leading to strong valley mixing. We argue that the unexpected intervalley scattering strongly impacts the ground state at low adatom coverage, which would provide a compelling explanation for the absence of a topological gap in recent experimental reports on graphene. Our conjecture is confirmed by real-space Chern number calculations and large-scale quantum transport simulations in disordered samples. This resolves an important controversy and suggests that a detectable topological gap can be achieved by increasing the spatial range of the induced spin-orbit interactions on graphene, e.g., using nanoparticles
Dipole modelling for a robust description of subdiffractional polariton waves
The nanophotonics of van der Waals (vdW) materials relies critically on the electromagnetic properties of polaritons defined on sub-diffraction length scales. Here, we use a full electromagnetic Hertzian dipole antenna (HDA) model to describe the hyperbolic phonon polaritons (HP(2)s) in vdW crystals of hexagonal boron nitride (hBN) on a gold surface. The HP2 waves are investigated by broadband synchrotron infrared nanospectroscopy (SINS) which covers the type I and type II hyperbolic bands simultaneously. Basically, polariton waves, observed by SINS, are assigned to the resultant electric field from the summation over the irradiated electric fields of dipoles distributed along the crystal edge and at the tip location and a non-propagating field. The values of polariton momenta and damping extracted from the HDA model present excellent agreement with theoretical predictions. Our analysis shows that the confinement factor of type I HP(2)s exceeds that of the type II ones by up to a factor of 3. We extract anti-parallel group velocities (v(g)) for type I (v(g,typeI) = -0.005c, c is the light velocity in a vacuum) in relation to type II (v(g,typeII) = 0.05c) polaritonic pulses, with lifetimes of similar to 0.6 ps and similar to 0.3 ps, respectively. Furthermore, by incorporating consolidated optical-near field theory into the HDA model, we simulate real-space images of polaritonic standing waves for hBN crystals of different shapes. This approach reproduces the experiments with a minimal computational cost. Thus, it is demonstrated that the HDA modelling self-consistently explains the measured complex-valued polariton near-field, while being a general approach applicable to other polariton types, like plasmon- and exciton-polaritons, active in the wide range of vdW materials11442121821226CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP311564/2018-6#88887.310281/2018-002018/05425-3; 2019/08818-9; 2015/11779-4; 2018/07276-
Dataset - Impact of complex adatom–induced interactions on quantum spin Hall phases
Data underlying article "Impact of complex adatom–induced interactions on quantum spin Hall phases" by F. J. Santos et al; to appear in Physical Review B, Rapid Communications; APS (2018). Content: ASCII files with datasets for quantum transport and topological invariant calculations (Fig. 3, main text); input files for fully-relativistic first-principle calculations of a thallium atom on graphene.<br