264 research outputs found

    A Nested Semiparametric Method for Case-control study with missingness

    Get PDF
    We propose a nested semiparametric model to analyze a case-control study where genuine case status is missing for some individuals. The concept of a noncase is introduced to allow for the imputation of the missing genuine cases. The odds ratio parameter of the genuine cases compared to controls is of interest. The imputation procedure predicts the probability of being a genuine case compared to a noncase semiparametrically in a dimension reduction fashion. This procedure is flexible, and vastly generalizes the existing methods. We establish the root-n asymptotic normality of the odds ratio parameter estimator. Our method yields stable odds ratio parameter estimation owing to the application of an efficient semiparametric sufficient dimension reduction estimator. We conduct finite sample numerical simulations to illustrate the performance of our approach, and apply it to a dilated cardiomyopathy study

    Separating the direct effects of traits on atherosclerotic cardiovascular disease from those mediated by type 2 diabetes

    Get PDF
    AIMS/HYPOTHESIS: Type 2 diabetes and atherosclerotic CVD share many risk factors. This study aimed to systematically assess a broad range of continuous traits to separate their direct effects on coronary and peripheral artery disease from those mediated by type 2 diabetes. METHODS: Our main analysis was a two-step Mendelian randomisation for mediation to quantify the extent to which the associations observed between continuous traits and liability to atherosclerotic CVD were mediated by liability to type 2 diabetes. To support this analysis, we performed several univariate Mendelian randomisation analyses to examine the associations between our continuous traits, liability to type 2 diabetes and liability to atherosclerotic CVD. RESULTS: Eight traits were eligible for the two-step Mendelian randomisation with liability to coronary artery disease as the outcome and we found similar direct and total effects in most cases. Exceptions included fasting insulin and hip circumference where the proportion mediated by liability to type 2 diabetes was estimated as 56% and 52%, respectively. Six traits were eligible for the analysis with liability to peripheral artery disease as the outcome. Again, we found limited evidence to support mediation by liability to type 2 diabetes for all traits apart from fasting insulin (proportion mediated: 70%). CONCLUSIONS/INTERPRETATION: Most traits were found to affect liability to atherosclerotic CVD independently of their relationship with liability to type 2 diabetes. These traits are therefore important for understanding atherosclerotic CVD risk regardless of an individual’s liability to type 2 diabetes. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00125-022-05653-1

    Multi-response Mendelian randomization: Identification of shared and distinct exposures for multimorbidity and multiple related disease outcomes

    Get PDF
    The existing framework of Mendelian randomization (MR) infers the causal effect of one or multiple exposures on one single outcome. It is not designed to jointly model multiple outcomes, as would be necessary to detect causes of more than one outcome and would be relevant to model multimorbidity or other related disease outcomes. Here, we introduce multi-response Mendelian randomization (MR2), an MR method specifically designed for multiple outcomes to identify exposures that cause more than one outcome or, conversely, exposures that exert their effect on distinct responses. MR2 uses a sparse Bayesian Gaussian copula regression framework to detect causal effects while estimating the residual correlation between summary-level outcomes, i.e., the correlation that cannot be explained by the exposures, and vice versa. We show both theoretically and in a comprehensive simulation study how unmeasured shared pleiotropy induces residual correlation between outcomes irrespective of sample overlap. We also reveal how non-genetic factors that affect more than one outcome contribute to their correlation. We demonstrate that by accounting for residual correlation, MR2 has higher power to detect shared exposures causing more than one outcome. It also provides more accurate causal effect estimates than existing methods that ignore the dependence between related responses. Finally, we illustrate how MR2 detects shared and distinct causal exposures for five cardiovascular diseases in two applications considering cardiometabolic and lipidomic exposures and uncovers residual correlation between summary-level outcomes reflecting known relationships between cardiovascular diseases

    Metabolic Traits and Stroke Risk in Individuals of African Ancestry: Mendelian Randomization Analysis.

    Get PDF
    BACKGROUND AND PURPOSE: Metabolic traits affect ischemic stroke (IS) risk, but the degree to which this varies across different ethnic ancestries is not known. Our aim was to apply Mendelian randomization to investigate the causal effects of type 2 diabetes (T2D) liability and lipid traits on IS risk in African ancestry individuals, and to compare them to estimates obtained in European ancestry individuals. METHODS: For African ancestry individuals, genetic proxies for T2D liability and circulating lipids were obtained from a meta-analysis of the African Partnership for Chronic Disease Research study, the UK Biobank, and the Million Veteran Program (total N=77 061). Genetic association estimates for IS risk were obtained from the Consortium of Minority Population Genome-Wide Association Studies of Stroke (3734 cases and 18 317 controls). For European ancestry individuals, genetic proxies for the same metabolic traits were obtained from Million Veteran Program (lipids N=297 626, T2D N=148 726 cases, and 965 732 controls), and genetic association estimates for IS risk were obtained from the MEGASTROKE study (34 217 cases and 406 111 controls). Random-effects inverse-variance weighted Mendelian randomization was used as the main method, complemented with sensitivity analyses more robust to pleiotropy. RESULTS: Higher genetically proxied T2D liability, LDL-C (low-density lipoprotein cholesterol), total cholesterol and lower genetically proxied HDL-C (high-density lipoprotein cholesterol) were associated with increased risk of IS in African ancestry individuals (odds ratio per doubling the odds of T2D liability [95% CI], 1.09 [1.07-1.11]; per standard-deviation increase in LDL-C, 1.12 [1.04-1.21]; total cholesterol: 1.23 [1.06-1.43]; HDL-C, 0.93 [0.89-0.99]). There was no evidence for differences in these estimates when performing analyses in European ancestry individuals. CONCLUSIONS: Our analyses support a causal effect of T2D liability and lipid traits on IS risk in African ancestry individuals, with Mendelian randomization estimates similar to those obtained in European ancestry individuals

    Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease.

    Get PDF
    BACKGROUND: Lipoprotein-related traits have been consistently identified as risk factors for atherosclerotic cardiovascular disease, largely on the basis of studies of coronary artery disease (CAD). The relative contributions of specific lipoproteins to the risk of peripheral artery disease (PAD) have not been well defined. We leveraged large-scale genetic association data to investigate the effects of circulating lipoprotein-related traits on PAD risk. METHODS: Genome-wide association study summary statistics for circulating lipoprotein-related traits were used in the mendelian randomization bayesian model averaging framework to prioritize the most likely causal major lipoprotein and subfraction risk factors for PAD and CAD. Mendelian randomization was used to estimate the effect of apolipoprotein B (ApoB) lowering on PAD risk using gene regions proxying lipid-lowering drug targets. Genes relevant to prioritized lipoprotein subfractions were identified with transcriptome-wide association studies. RESULTS: ApoB was identified as the most likely causal lipoprotein-related risk factor for both PAD (marginal inclusion probability, 0.86; P=0.003) and CAD (marginal inclusion probability, 0.92; P=0.005). Genetic proxies for ApoB-lowering medications were associated with reduced risk of both PAD (odds ratio,0.87 per 1-SD decrease in ApoB [95% CI, 0.84-0.91]; P=9×10-10) and CAD (odds ratio,0.66 [95% CI, 0.63-0.69]; P=4×10-73), with a stronger predicted effect of ApoB lowering on CAD (ratio of effects, 3.09 [95% CI, 2.29-4.60]; P<1×10-6). Extra-small very-low-density lipoprotein particle concentration was identified as the most likely subfraction associated with PAD risk (marginal inclusion probability, 0.91; P=2.3×10-4), whereas large low-density lipoprotein particle concentration was the most likely subfraction associated with CAD risk (marginal inclusion probability, 0.95; P=0.011). Genes associated with extra-small very-low-density lipoprotein particle and large low-density lipoprotein particle concentration included canonical ApoB pathway components, although gene-specific effects were variable. Lipoprotein(a) was associated with increased risk of PAD independently of ApoB (odds ratio, 1.04 [95% CI, 1.03-1.04]; P=1.0×10-33). CONCLUSIONS: ApoB was prioritized as the major lipoprotein fraction causally responsible for both PAD and CAD risk. However, ApoB-lowering drug targets and ApoB-containing lipoprotein subfractions had diverse associations with atherosclerotic cardiovascular disease, and distinct subfraction-associated genes suggest possible differences in the role of lipoproteins in the pathogenesis of PAD and CAD

    Admixture mapping of peripheral artery disease in a Dominican population reveals a putative risk locus on 2q35

    Get PDF
    Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have a significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors; however, recent work suggests prevalence may differ between sub-groups. Here, we examined a large cohort of diverse adults in the BioMe biobank in New York City. We observed the prevalence of PAD at 1.7% in EAs vs. 8.5% and 9.4% in AAs and HLs, respectively, and among HL sub-groups, the prevalence was found at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs [OR = 3.15 (95% CI 2.33–4.25), p &lt; 6.44 × 10−14]. To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry and PAD in Dominican BioMe participants (N = 1,813) separately from European, African, and Native American (NAT) continental ancestry tracts. The top association with PAD was an NAT ancestry tract at chromosome 2q35 [OR = 1.96 (SE = 0.16), p &lt; 2.75 × 10−05) with 22.6% vs. 12.9% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607, a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. Efforts to reproduce the signal in other Hispanic cohorts were unsuccessful. In summary, we showed how leveraging health system data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a putative risk locus in a Dominican population

    In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators

    Get PDF
    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease. Copyright

    Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache

    Get PDF
    Background: Nearly a fifth of the world's population suffer from migraine headache, yet risk factors for this disease are poorly characterized. Methods: To further elucidate these factors, we conducted a genetic correlation analysis using cross-trait linkage disequilibrium (LD) score regression between migraine headache and 47 traits from the UK Biobank. We then tested for possible causality between these phenotypes and migraine, using Mendelian randomization. In addition, we attempted replication of our findings in an independent genome-wide association study (GWAS) when available. Results: We report multiple phenotypes with genetic correlation (P < 1.06 × 10-3) with migraine, including heart disease, type 2 diabetes, lipid levels, blood pressure, autoimmune and psychiatric phenotypes. In particular, we find evidence that blood pressure directly contributes to migraine and explains a previously suggested causal relationship between calcium and migraine. Conclusions: This is the largest genetic correlation analysis of migraine headache to date, both in terms of migraine GWAS sample size and the number of phenotypes tested. We find that migraine has a shared genetic basis with a large number of traits, indicating pervasive pleiotropy at migraine-associated loci.Peer reviewe
    corecore