721 research outputs found
Multi-channel Wireless Networks with Infrastructure Support: Capacity and Delay
In this paper, we propose a novel multi-channel network with infrastructure
support, called an \textit{MC-IS} network, which has not been studied in the
literature. To the best of our knowledge, we are the first to study such an
\textit{MC-IS} network. Our \textit{MC-IS} network is equipped with a number of
infrastructure nodes which can communicate with common nodes using a number of
channels where a communication between a common node and an infrastructure node
is called an infrastructure communication and a communication between two
common nodes is called an ad-hoc communication. Our proposed \textit{MC-IS}
network has a number of advantages over three existing conventional networks,
namely a single-channel wireless ad hoc network (called an \textit{SC-AH}
network), a multi-channel wireless ad hoc network (called an \textit{MC-AH}
network) and a single-channel network with infrastructure support (called an
\textit{SC-IS} network). In particular, the \textit{network capacity} of our
proposed \textit{MC-IS} network is times higher than that of
an \textit{SC-AH} network and an \textit{MC-AH} network and the same as that of
an \textit{SC-IS} network, where is the number of nodes in the network. The
\textit{average delay} of our \textit{MC-IS} network is times
lower than that of an \textit{SC-AH} network and an \textit{MC-AH} network, and
times lower than the average delay of an \textit{SC-IS} network,
where and denote the number of channels dedicated for infrastructure
communications and the number of interfaces mounted at each infrastructure
node, respectively.Comment: 12 pages, 6 figures, 3 table
On Capacity and Delay of Multi-channel Wireless Networks with Infrastructure Support
In this paper, we propose a novel multi-channel network with infrastructure
support, called an MC-IS network, which has not been studied in the literature.
To the best of our knowledge, we are the first to study such an MC-IS network.
Our proposed MC-IS network has a number of advantages over three existing
conventional networks, namely a single-channel wireless ad hoc network (called
an SC-AH network), a multi-channel wireless ad hoc network (called an MC-AH
network) and a single-channel network with infrastructure support (called an
SC-IS network). In particular, the network capacity of our proposed MC-IS
network is times higher than that of an SC-AH network and an
MC-AH network and the same as that of an SC-IS network, where is the number
of nodes in the network. The average delay of our MC-IS network is times lower than that of an SC-AH network and an MC-AH network, and
times lower than the average delay of an SC-IS network, where
and denote the number of channels dedicated for infrastructure
communications and the number of interfaces mounted at each infrastructure
node, respectively. Our analysis on an MC-IS network equipped with
omni-directional antennas only has been extended to an MC-IS network equipped
with directional antennas only, which are named as an MC-IS-DA network. We show
that an MC-IS-DA network has an even lower delay of compared with an SC-IS network and our
MC-IS network. For example, when and , an
MC-IS-DA network can further reduce the delay by 24 times lower that of an
MC-IS network and reduce the delay by 288 times lower than that of an SC-IS
network.Comment: accepted, IEEE Transactions on Vehicular Technology, 201
Blockchain-based data privacy management with Nudge theory in open banking
Open banking brings both opportunities and challenges to banks all over the world especially in data management. A blockchain as a continuously growing list of records managed by a peer-to-peer network is widely used in various application scenarios; and it is commonly agreed that the blockchain technology can improve the protection of financial data privacy. However, current blockchain technology still poses some challenges in fully meeting the needs of financial data privacy protection. In order to address the existing problems, this paper proposes a new data privacy management framework based on the blockchain technology for the financial sector. The framework consists of three components: (1) a data privacy classification method according to the characteristics of financial data; (2) a new collaborative-filtering-based model; and (3) a data disclosure confirmation scheme for customer strategies based on the Nudge Theory. We implement a prototype and propose a set of algorithms for this framework. The framework is validated through field experiments and laboratory experiments. Β© 2019 Elsevier B.V
- β¦