1,018 research outputs found

    Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Get PDF
    Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a) production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b) production fluxes of secondary organic aerosols from biogenic organic volatiles; (c) emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d) emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN) numbers derived from satellite (MODIS). More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (r[subscript e]) data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to r[subscript e] were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt) showed widespread positive correlations to CCN only at low latitudes. Correlations to r[subscript e] were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud microphysics. Validation against ground measurements pointed out that the parameterizations used captured fairly well the variability of aerosol production fluxes in most cases, yet some caution is warranted because there is room for further improvement, particularly for primary organic aerosol. Uncertainties and synergies are discussed, and recommendations of research needs are given

    Sub-milliarcsecond precision spectro-astrometry of Be stars

    Full text link
    The origin of the disks around Be stars is still not known. Further progress requires a proper parametrization of their structure, both spatially and kinematically. This is challenging as the disks are very small. Here we assess whether a novel method is capable of providing these data. We obtained spectro astrometry around the Pa beta line of two bright Be stars, alpha Col and zeta Tau, to search for disk signatures. The data, with a pixel to pixel precision of the centroid position of 0.3..0.4 milliarcsecond is the most accurate such data to date. Artefacts at the 0.85 mas level are present in the data, but these are readily identified as they were non-repeatable in our redundant datasets. This does illustrate the need of taking multiple data to avoid spurious detections. The data are compared with simple model simulations of the spectro astrometric signatures due to rotating disks around Be stars. The upper limits we find for the disk radii correspond to disk sizes of a few dozen stellar radii if they rotate Keplerian. This is very close to observationally measured and theoretically expected disk sizes, and this paper therefore demonstrates that spectro-astrometry, of which we present the first such attempt, has the potential to resolve the disks around Be stars.Comment: 6 pages, A&A accepte

    The Rise and Fall of Debris Disks: MIPS Observations of h and chi Persei and the Evolution of Mid-IR Emission from Planet Formation

    Full text link
    We describe Spitzer/MIPS observations of the double cluster, h and χ\chi Persei, covering a \sim 0.6 square-degree area surrounding the cores of both clusters. The data are combined with IRAC and 2MASS data to investigate \sim 616 sources from 1.25-24 μm\mu m. We use the long-baseline KsK_{s}-[24] color to identify two populations with IR excess indicative of circumstellar material: Be stars with 24 μm\mu m excess from optically-thin free free emission and 17 fainter sources (J\sim 14-15) with [24] excess consistent with a circumstellar disk. The frequency of IR excess for the fainter sources increases from 4.5 μm\mu m through 24 μm\mu m. The IR excess is likely due to debris from the planet formation process. The wavelength-dependent behavior is consistent with an inside-out clearing of circumstellar disks. A comparison of the 24 μm\mu m excess population in h and χ\chi Per sources with results for other clusters shows that 24 μm\mu m emission from debris disks 'rises' from 5 to 10 Myr, peaks at \sim 10-15 Myr, and then 'falls' from \sim 15/20 Myr to 1 Gyr.Comment: 48 pages, 15 figures, accepted for publication in The Astrophysical Journa

    A representative sample of Be stars IV: Infrared Photometry and the Continuum Excess

    Get PDF
    We present infra-red (JHK) photometry of 52 isolated Be stars of spectral types O9--B9 and luminosity classes III--V. We describe a new method of reduction, enabling separation of interstellar reddening and circumstellar excess. Using this technique we find that the disc emission makes a maximum contribution to the optical (B-V) colour of a few tenths of a magnitude. We find strong correlations between a range of emission lines (H\alpha, Br\gamma, Br11, and Br18) from the Be stars' discs, and the circumstellar continuum excesses. We also find that stellar rotation and disc excess are correlated.Comment: 10 pages, 9 figures, accepted for publication in Astronomy and Astrophysics. Other papers in this series can be obtained at http://cwis.livjm.ac.uk/astro/research/environs.htm

    Observational Constraints on Interstellar Grain Alignment

    Full text link
    We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavelength of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa

    Comparison of the Hα circumstellar disks in Be/X-ray binaries and Be stars

    Get PDF
    We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the Hα emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the Be/X-ray binaries and the Be stars seen in the full with half maximum versus peak separation diagram indicates that the disks in Be/X-ray binaries have on average a smaller size, probably truncated by the compact object.Reig Torres, Pablo, [email protected] ; Fabregat Llueca, Juan, [email protected]

    Estimating Be Star Disk Radii using H-alpha Emission Equivalent Widths

    Full text link
    We present numerical models of the circumstellar disks of Be stars, and we describe the resulting synthetic H-alpha emission lines and maps of the wavelength-integrated emission flux projected onto the sky. We demonstrate that there are monotonic relationships between the emission line equivalent width and the ratio of the angular half-width at half maximum of the projected disk major axis to the radius of the star. These relationships depend mainly upon the temperatures of the disk and star, the inclination of the disk normal to the line of sight, and the adopted outer boundary for the disk radius. We show that the predicted H-alpha disk radii are consistent with those observed directly through long baseline interferometry of nearby Be stars (especially once allowance is made for disk truncation in binaries and for dilution of the observed H-alpha equivalent width by continuum disk flux in the V-band).Comment: 12 pages, 2 figures, ApJL in pres

    Be stars and binaries in the field of the SMC open cluster NGC330 with VLT-FLAMES

    Get PDF
    Observations of hot stars belonging to the young cluster SMC-NGC330 and its surrounding region were obtained with the VLT-GIRAFFE facilities in MEDUSA mode. We investigated the B and Be star properties and proportions in this environment of low metallicity. We also searched for rapid variability in Be stars using photometric databases. With spectroscopic measurements we characterized the emission and properties of Be stars. By cross-correlation with photometric databases such as MACHO and OGLE, we searched for binaries in our sample of hot stars, as well as for short-term variability in Be stars. We report on the global characteristics of the Be star sample (131 objects). We find that the proportion of early Be stars with a large equivalent width of the Halpha emission line is higher in the SMC than in the LMC and MW. We find a slight increase in the proportion of Be stars compared to B-type stars with decreasing metallicity. We also discovered spectroscopic and photometric binaries, and for the latter we give their orbital period. We identify 13 Be stars with short-term variability. We determine their period(s) and find that 9 Be stars are multiperiodic.Comment: english not yet corrected, 23 pages, 4th article about the study in the LMC NGC2004 and SMC NGC33

    A study of the B and Be star population in the field of the LMC open cluster NGC2004 with VLT-FLAMES

    Get PDF
    Observations of hot stars belonging to the young cluster LMC-NGC2004 and its surrounding region have been obtained with the VLT-GIRAFFE facilities in MEDUSA mode. 25 Be stars were discovered; the proportion of Be stars compared to B-type stars is found to be of the same order in the LMC and in the Galaxy fields. 23 hot stars were discovered as spectroscopic binaries (SB1 and SB2), 5 of these are found to be eclipsing systems from the MACHO database, with periods of a few days. About 75% of the spectra in our sample are polluted by hydrogen (Halpha and Hgamma), [SII] and [NII] nebular lines. These lines are typical of HII regions. They could be associated with patchy nebulosities with a bi-modal distribution in radial velocity, with higher values (+335 kms^{-1}) preferentially seen inside the southern part of the known bubble LMC4 observed in HI at 21 cm.Comment: 12 pages, 17 figures, accepted to A&
    corecore