65 research outputs found
Multiple centrality assessment in Parma : a network analysis of paths and open spaces
One of the largest of Europe, the recently realized university campus 'Area of the Sciences' in Parma, northern Italy, has been planned for a comprehensive programme of renovation and revitalization with a special focus on vehicular accessibility and the quality of open spaces. As part of the problem setting phase, the authors, with Rivi Engineering, applied Multiple Centrality Assessment (MCA) - a process of network analysis based on primal graphs, a set of different centrality indices and the metric computation of distances - in order to understand why the existent system of open spaces and pedestrian paths is so scarcely experienced by students as well as faculty and staff members and why it appears so poorly supportive of social life and human exchange. In the problem-solving phase MCA was also applied, turning out to offer a relevant contribution to the comparative evaluation of two alternative proposed scenarios, leading to the identification of one final solution of urban design. In the present paper, the first professional application of MCA, an innovative approach to the network analysis of geographic complex systems, is presented and its relevance in the context of a problem of urban design illustrated
LOCATING CRITICAL LINES IN HIGH-VOLTAGE ELECTRICAL POWER GRIDS
Electrical power grids are among the infrastructures that are attracting a great deal of attention because of their intrinsic criticality. Here we analyze the topological vulnerability and improvability of the spanish 400 kV, the french 400 kV and the italian 380 kV power transmission grids. For each network we detect the most critical lines and suggest how to improve the connectivity
Centrality Measures in Spatial Networks of Urban Streets
We study centrality in urban street patterns of different world cities
represented as networks in geographical space. The results indicate that a
spatial analysis based on a set of four centrality indices allows an extended
visualization and characterization of the city structure. Planned and
self-organized cities clearly belong to two different universality classes. In
particular, self-organized cities exhibit scale-free properties similar to
those found in the degree distributions of non-spatial networks.Comment: 4 pages, 3 figure
A model for cascading failures in complex networks
Large but rare cascades triggered by small initial shocks are present in most
of the infrastructure networks. Here we present a simple model for cascading
failures based on the dynamical redistribution of the flow on the network. We
show that the breakdown of a single node is sufficient to collapse the
efficiency of the entire system if the node is among the ones with largest
load. This is particularly important for real-world networks with an highly
hetereogeneous distribution of loads as the Internet and electrical power
grids.Comment: 4 pages, 4 figure
Efficiency of Scale-Free Networks: Error and Attack Tolerance
The concept of network efficiency, recently proposed to characterize the
properties of small-world networks, is here used to study the effects of errors
and attacks on scale-free networks. Two different kinds of scale-free networks,
i.e. networks with power law P(k), are considered: 1) scale-free networks with
no local clustering produced by the Barabasi-Albert model and 2) scale-free
networks with high clustering properties as in the model by Klemm and Eguiluz,
and their properties are compared to the properties of random graphs
(exponential graphs). By using as mathematical measures the global and the
local efficiency we investigate the effects of errors and attacks both on the
global and the local properties of the network. We show that the global
efficiency is a better measure than the characteristic path length to describe
the response of complex networks to external factors. We find that, at variance
with random graphs, scale-free networks display, both on a global and on a
local scale, a high degree of error tolerance and an extreme vulnerability to
attacks. In fact, the global and the local efficiency are unaffected by the
failure of some randomly chosen nodes, though they are extremely sensititive to
the removal of the few nodes which play a crucial role in maintaining the
network's connectivity.Comment: 23 pages, 10 figure
The European union’s 2010 target: Putting rare species in focus
P. 167-185The European Union has adopted the ambitious target of halting the loss of biodiversity by
2010. Several indicators have been proposed to assess progress towards the 2010 target, two
of them addressing directly the issue of species decline. In Europe, the Fauna Europaea
database gives an insight into the patterns of distribution of a total dataset of 130,000 terrestrial
and freshwater species without taxonomic bias, and provide a unique opportunity
to assess the feasibility of the 2010 target. It shows that the vast majority of European species
are rare, in the sense that they have a restricted range. Considering this, the paper discusses
whether the 2010 target indicators really cover the species most at risk of extinction.
The analysis of a list of 62 globally extinct European taxa shows that most contemporary
extinctions have affected narrow-range taxa or taxa with strict ecological requirements.
Indeed, most European species listed as threatened in the IUCN Red List are narrow-range
species. Conversely, there are as many wide-range species as narrow-range endemics in
the list of protected species in Europe (Bird and Habitat Directives). The subset of
biodiversity captured by the 2010 target indicators should be representative of the whole
biodiversity in terms of patterns of distribution and abundance. Indicators should not overlook
a core characteristic of biodiversity, i.e. the large number of narrow-range species and
their intrinsic vulnerability. With ill-selected indicator species, the extinction of narrowrange
endemics would go unnoticedS
- …