241 research outputs found

    Analysis of the floating car data of Turin public transportation system: first results

    Get PDF
    Global Navigation Satellite System (GNSS) sensors represent nowadays a mature technology, low-cost and efficient, to collect large spatio-temporal datasets (Geo Big Data) of vehicle movements in urban environments. Anyway, to extract the mobility information from such Floating Car Data (FCD), specific analysis methodologies are required. In this work, the first attempts to analyse the FCD of the Turin Public Transportation system are presented. Specifically, a preliminary methodology was implemented, in view of an automatic and possible real-time impedance map generation. The FCD acquired by all the vehicles of the Gruppo Torinese Trasporti (GTT) company in the month of April 2017 were thus processed to compute their velocities and a visualization approach based on Osmnx library was adopted. Furthermore, a preliminary temporal analysis was carried out, showing higher velocities in weekend days and not peak hours, as could be expected. Finally, a method to assign the velocities to the line network topology was developed and some tests carried out

    Terrain classification by cluster analisys

    Get PDF
    The digital terrain modelling can be obtained by different methods belonging to two principal categories: deterministic methods (e.g. polinomial and spline functions interpolation, Fourier spectra) and stochastic methods (e.g. least squares collocation and fractals, i.e. the concept of selfsimilarity in probability). To reach good resul ts, both the fi rst and the second methods need same initial suitable information which can be gained by a preprocessing of data named terrain classification. In fact, the deterministic methods require to know how is the roughness of the terrain, related to the density of the data (elevations, deformations, etc.) used for the i nterpo 1 at ion, and the stochast i c methods ask for the knowledge of the autocorrelation function of the data. Moreover, may be useful or very necessary to sp 1 it up the area under consideration in subareas homogeneous according to some parameters, because of different kinds of reasons (too much large initial set of data, so that they can't be processed togheter; very important discontinuities or singularities; etc.). Last but not least, may be remarkable to test the type of distribution (normal or non-normal) of the subsets obtained by the preceding selection, because the statistical properties of the normal distribution are very important (e.g., least squares linear estimations are the same of maximum likelihood and minimum variance ones)

    Upgrade of foss date plug-in: Implementation of a new radargrammetric DSM generation capability

    Get PDF
    Synthetic Aperture Radar (SAR) satellite systems may give important contribution in terms of Digital Surface Models (DSMs) generation considering their complete independence from logistic constraints on the ground and weather conditions. In recent years, the new availability of very high resolution SAR data (up to 20 cm Ground Sample Distance) gave a new impulse to radargrammetry and allowed new applications and developments. Besides, to date, among the software aimed to radargrammetric applications only few show as free and open source. It is in this context that it has been decided to widen DATE (Digital Automatic Terrain Extractor) plug-in capabilities and additionally include the possibility to use SAR imagery for DSM stereo reconstruction (i.e. radargrammetry), besides to the optical workflow already developed. DATE is a Free and Open Source Software (FOSS) developed at the Geodesy and Geomatics Division, University of Rome "La Sapienza", and conceived as an OSSIM (Open Source Software Image Map) plug-in. It has been developed starting from May 2014 in the framework of 2014 Google Summer of Code, having as early purpose a fully automatic DSMs generation from high resolution optical satellite imagery acquired by the most common sensors. Here, the results achieved through this new capability applied to two stacks (one ascending and one descending) of three TerraSAR-X images each, acquired over Trento (Northern Italy) testfield, are presented. Global accuracies achieved are around 6 metres. These first results are promising and further analysis are expected for a more complete assessment of DATE application to SAR imagery

    High resolution satellite imagery orientation accuracy assessment by leave-one-out method: accuracy index selection and accuracy uncertainty

    Get PDF
    The Leave-one-out cross-validation (LOOCV) was recently applied to the evaluation of High Resolution Satellite Imagery orientation accuracy and it has proven to be an effective method alternative with respect to the most common Hold-out-validation (HOV), in which ground points are split into two sets, Ground Control Points used for the orientation model estimation and Check Points used for the model accuracy assessment. On the contrary, the LOOCV applied to HRSI implies the iterative application of the orientationmodel using all the known ground points as GCPs except one, different in each iteration, used as a CP. In every iteration the residual between imagery derived coordinates with respect to CP coordinates (prediction error of the model on CP coordinates) is calculated; the overall spatial accuracy achievable from the oriented image may be estimated by computing the usual RMSE or, better, a robust accuracy index like the mAD (median Absolute Deviation) of prediction errors on all the iterations. In this way it is possible to overcome some drawbacks of the HOV: LOOCVis a reliable and robustmethod, not dependent on a particular set of CPs and on possible outliers, and it allows us to use each known ground point both as a GCP and as a CP, capitalising all the available ground information. This is a crucial problem in current situations, when the number of GCPs to be collected must be reduced as much as possible for obvious budget problems. The fundamentalmatter to deal with was to assess howwell LOOCVindexes (mADand RMSE) are able to represent the overall accuracy, that is howmuch they are stable and close to the corresponding HOV RMSE assumed as reference. Anyway, in the first tests the indexes comparison was performed in a qualitative way, neglecting their uncertainty. In this work the analysis has been refined on the basis of Monte Carlo simulations, starting from the actual accuracy of ground points and images coordinates, estimating the desired accuracy indexes (e.g. mAD and RMSE) in several trials, computing their uncertainty (standard deviation) and accounting for them in the comparison. Tests were performed on a QuickBird Basic image implementing an ad hoc procedure within the SISAR software developed by the Geodesy and Geomatics Team at the Sapienza University of Rome. The LOOCV method with accuracy evaluated by mAD seemed promising and useful for practical case

    Exploiting Sentinel-1 amplitude data for glacier surface velocity field measurements. Feasibility demonstration on baltoro glacier

    Get PDF
    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed using Sentinel-1 imagery acquired over the Karakoram mountain range (North Pakistan) and Baltoro and other three glaciers have been investigated. During this study, a stack of 11 images acquired in the period from October 2014 to September 2015 has been used in order to investigate the potentialities of the Sentinel-1 SAR sensor to retrieve the glacier surface velocity every month. The aim of this test was to measure the glacier surface velocity between each subsequent pair, in order to produce a time series of the surface velocity fields along the investigated period. The necessary co-registration procedure between the images has been performed and subsequently the glaciers areas have been sampled using a regular grid with a 250 × 250 meters posting. Finally the surface velocity field has been estimated, for each image pair, using a template matching procedure, and an outlier filtering procedure based on the signal to noise ratio values has been applied, in order to exclude from the analysis unreliable points. The achieved velocity values range from 10 to 25 meters/month and they are coherent to those obtained in previous studies carried out on the same glaciers and the results highlight that it is possible to have a continuous update of the glacier surface velocity field through free Sentinel-1 imagery, that could be very useful to investigate the seasonal effects on the glaciers fluid-dynamics

    Geometric potential of cartosat-1 stereo imagery

    Get PDF
    Cartosat-1 satellite, launched by Department of Space (DOS), Government of India, is dedicated to stereo viewing for large scale mapping and terrain modelling applications. This stereo capability fills the limited capacity of very high resolution satellites for three-dimensional point determination and enables the generation of detailed digital elevation models (DEMs) not having gaps in mountainous regions like for example the SRTM height model.The Cartosat-1 sensor offers a resolution of 2.5m GSD in panchromatic mode. One CCD-line sensor camera is looking with a nadir angle of 26' in forward direction, the other 5' aft along the track. The Institute "Area di Geodesia e Geomatica"-Sapienza Università di Roma and the Institute of Photogrammetry and Geoinformation, Leibniz University Hannover participated at the ISPRS-ISRO Cartosat-1 Scientific Assessment Programme (CSAP), in order to investigate the generation of Digital Surface Models (DSMs) from Cartosat-1 stereo scenes. The aim of this work concerns the orientation of Cartosat-1 stereo pairs, using the given RPCs improved by control points and the definition of an innovative model based on geometric reconstruction, that is used also for the RPC extraction utilizing a terrain independent approach. These models are implemented in the scientific software (SISAR-Software per Immagini Satellitari ad Alta Risoluzione) developed at Sapienza Università di Roma. In this paper the SISAR model is applied to different stereo pairs (Castelgandolfo and Rome) and to point out the effectiveness of the new model, SISAR results are compared with the corresponding ones obtained by the software OrthoEngine 10.0 (PCI Geomatica).By the University of Hannover a similar general satellite orientation program has been developed and the good results, achieved by bias corrected sensor oriented RPCs, for the test fields Mausanne (France) and Warsaw (Poland) have been described.For some images, digital height models have been generated by automatic image matching with least squares method, analysed in relation to given reference height models. For the comparison with the reference DEMs the horizontal fit of the height models to each other has been checked by adjustment

    Monitoring the impact of land cover change on surface urban heat island through google earth engine. Proposal of a global methodology, first applications and problems

    Get PDF
    All over the world, the rapid urbanization process is challenging the sustainable development of our cities. In 2015, the United Nation highlighted in Goal 11 of the SDGs (Sustainable Development Goals) the importance to "Make cities inclusive, safe, resilient and sustainable". In order to monitor progress regarding SDG 11, there is a need for proper indicators, representing different aspects of city conditions, obviously including the Land Cover (LC) changes and the urban climate with its most distinct feature, the Urban Heat Island (UHI). One of the aspects of UHI is the Surface Urban Heat Island (SUHI), which has been investigated through airborne and satellite remote sensing over many years. The purpose of this work is to show the present potential of Google Earth Engine (GEE) to process the huge and continuously increasing free satellite Earth Observation (EO) Big Data for long-term and wide spatio-temporal monitoring of SUHI and its connection with LC changes. A large-scale spatio-temporal procedure was implemented under GEE, also benefiting from the already established Climate Engine (CE) tool to extract the Land Surface Temperature (LST) from Landsat imagery and the simple indicator Detrended Rate Matrix was introduced to globally represent the net effect of LC changes on SUHI. The implemented procedure was successfully applied to six metropolitan areas in the U.S., and a general increasing of SUHI due to urban growth was clearly highlighted. As a matter of fact, GEE indeed allowed us to process more than 6000 Landsat images acquired over the period 1992-2011, performing a long-term and wide spatio-temporal study on SUHI vs. LC change monitoring. The present feasibility of the proposed procedure and the encouraging obtained results, although preliminary and requiring further investigations (calibration problems related to LST determination from Landsat imagery were evidenced), pave the way for a possible global service on SUHI monitoring, able to supply valuable indications to address an increasingly sustainable urban planning of our cities

    Esperimento RTK1: verifica delle prestazioni del posizionamento NRTK (Cap. 4 app. 1)

    Get PDF
    Un libro bianco su: "I servizi di posizionamento satellitare per l'e-government

    Trasformazione tra datum e sistemi cartografici in ambito nazionale: implementazione di un software in ambiente GRASS e sue prestazioni

    Get PDF
    Selected paper presentato a GeoExplora Workshop 2004 - 6° Congresso MondoGIS Il lavoro illustra le caratteristiche e le prestazioni di un comando GRASS sviluppato per gestire le trasformazioni tra i sistemi geodetici (datum), (ed i corrispondenti cartografici) più utilizzati in ambito nazionale, Roma1940 (Gauss-Boaga), ED1950 (UTM-ED1950) e WGS84-ETRF89 (UTMWGS84- ETRF89) per scopi cartografici a scala medio-grande (1:5000)

    A new digital image correlation software for displacements field measurement in structural applications

    Get PDF
    Recently, there has been a growing interest in studying non-contact techniques for strain and displacement measurement. Within photogrammetry, Digital Image Correlation (DIC) has received particular attention thanks to the recent advances in the field of low-cost, high resolution digital cameras, computer power and memory storage. DIC is indeed an optical technique able to measure full field displacements and strain by comparing digital images of the surface of a material sample at different stages of deformation and thus can play a major role in structural monitoring applications. For all these reasons, a free and open source 2D DIC software, named py2DIC, was developed at the Geodesy and Geomatics Division of DICEA, University of Rome "La Sapienza". Completely written in python, the software is based on the template matching method and computes the displacement and strain fields. The potentialities of Py2DIC were evaluated by processing the images captured during a tensile test performed in the Lab of Structural Engineering, where three different Glass Fiber Reinforced Polymer samples were subjected to a controlled tension by means of a universal testing machine. The results, compared with the values independently measured by several strain gauges fixed on the samples, demonstrate the possibility to successfully characterize the deformation mechanism of the investigated material. Py2DIC is indeed able to highlight displacements at few microns level, in reasonable agreement with the reference, both in terms of displacements (again, at few microns in the average) and Poisson's module
    • …
    corecore