3,381 research outputs found
Ab initio parametrised model of strain-dependent solubility of H in alpha-iron
The calculated effects of interstitial hydrogen on the elastic properties of
alpha-iron from our earlier work are used to describe the H interactions with
homogeneous strain fields using ab initio methods. In particular we calculate
the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For
comparison, these interactions are parametrised successfully using a simple
model with parameters entirely derived from ab initio methods. The results are
used to predict the solubility of H in spatially-varying elastic strain fields,
representative of realistic dislocations outside their core. We find a strong
directional dependence of the H-dislocation interaction, leading to strong
attraction of H by the axial strain components of edge dislocations and by
screw dislocations oriented along the critical slip direction. We
further find a H concentration enhancement around dislocation cores, consistent
with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187),
minor changes from previous version
Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect
The plastic deformation of dilute alloys is often accompanied by plastic
instabilities due to dynamic strain aging and dislocation interaction. The
repeated breakaway of dislocations from and their recapture by solute atoms
leads to stress serrations and localized strain in the strain controlled
tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present
work, we analyse the stress time series data of the observed PLC effect in the
constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of
strain rates at room temperature. The scaling behaviour of the PLC effect was
studied using two complementary scaling analysis methods: the finite variance
scaling method and the diffusion entropy analysis. From these analyses we could
establish that in the entire span of strain rates, PLC effect showed Levy walk
property. Moreover, the multiscale entropy analysis is carried out on the
stress time series data observed during the PLC effect to quantify the
complexity of the distinct spatiotemporal dynamical regimes. It is shown that
for the static type C band, the entropy is very low for all the scales compared
to the hopping type B and the propagating type A bands. The results are
interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure
On piezophase effects in mechanically loaded atomic scale Josephson junctions
The response of an intrinsic Josephson contact to externally applied stress
is considered within the framework of the dislocation-induced atomic scale
Josephson effect. The predicted quasi-periodic (Fraunhofer-like)stress-strain
and stress-current patterns should manifest themselves for experimentally
accessible values of applied stresses in intrinsically defected (e.g.,twinned)
crystals.Comment: REVTEX (epsf style), 2 EPS figure
Density hardening plasticity and mechanical aging of silica glass under pressure: A Raman spectroscopic study
In addition of a flow, plastic deformation of structural glasses (in
particular amorphous silica) is characterized by a permanent densification.
Raman spectroscopic estimators are shown to give a full account of the plastic
behavior of silica under pressure. While the permanent densification of silica
has been widely discussed in terms of amorphous-amorphous transition, from a
plasticity point of view, the evolution of the residual densification with the
maximum pressure of a pressure cycle can be discussed as a density hardening
phenomenon. In the framework of such a mechanical aging effect, we propose that
the glass structure could be labelled by the maximum pressure experienced by
the glass and that the saturation of densification could be associated with the
densest packing of tetrahedra only linked by their vertices
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
FGFR2 amplification in colorectal adenocarcinoma
FGFR2 is recurrently amplified in 5% of gastric cancers and 1%–4% of breast cancers; however, this molecular alteration has never been reported in a primary colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under investigation in clinical trials for breast and gastric cancer. Thus, better characterizing colorectal tumors for FGFR2 amplification could identify a subset of patients who may benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification identified by clinical next-generation sequencing in a primary colorectal cancer. Further characterization of the tumor by immunohistochemistry showed neuroendocrine differentiation, similar to the reported properties of the NCI-H716 cell line. These findings demonstrate that the spectrum of potentially clinically actionable mutations detected by targeted clinical sequencing panels is not limited to only single-nucleotide polymorphisms and insertions/deletions but also to copy-number alterations.</jats:p
Critical Dynamics of Burst Instabilities in the Portevin-Le Chatelier Effect
We investigate the Portevin-Le Chatelier effect (PLC), by compressing Al-Mg
alloys in a very large deformation range, and interpret the results from the
viewpoint of phase transitions and critical phenomena. The system undergoes two
dynamical phase transitions between intermittent (or "jerky") and "laminar"
plastic dynamic phases. Near these two dynamic critical points, the order
parameter 1/\tau of the PLC effect exhibits large fluctuations, and "critical
slowing down" (i.e., the number of bursts, or plastic instabilities, per
unit time slows down considerably).Comment: the published 4-page version is in the PRL web sit
Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field
We study the local disorder in the deformation of amorphous materials by
decomposing the particle displacements into a continuous, inhomogeneous field
and the corresponding fluctuations. We compare these fields to the commonly
used non-affine displacements in an elastically deformed 2D Lennard-Jones
glass. Unlike the non-affine field, the fluctuations are very localized, and
exhibit a much smaller (and system size independent) correlation length, on the
order of a particle diameter, supporting the applicability of the notion of
local "defects" to such materials. We propose a scalar "noise" field to
characterize the fluctuations, as an additional field for extended continuum
models, e.g., to describe the localized irreversible events observed during
plastic deformation.Comment: Minor corrections to match the published versio
- …