5,953 research outputs found
Network Information Flow in Small World Networks
Recent results from statistical physics show that large classes of complex
networks, both man-made and of natural origin, are characterized by high
clustering properties yet strikingly short path lengths between pairs of nodes.
This class of networks are said to have a small-world topology. In the context
of communication networks, navigable small-world topologies, i.e. those which
admit efficient distributed routing algorithms, are deemed particularly
effective, for example in resource discovery tasks and peer-to-peer
applications. Breaking with the traditional approach to small-world topologies
that privileges graph parameters pertaining to connectivity, and intrigued by
the fundamental limits of communication in networks that exploit this type of
topology, we investigate the capacity of these networks from the perspective of
network information flow. Our contribution includes upper and lower bounds for
the capacity of standard and navigable small-world models, and the somewhat
surprising result that, with high probability, random rewiring does not alter
the capacity of a small-world network.Comment: 23 pages, 8 fitures, submitted to the IEEE Transactions on
Information Theory, November 200
Informed Network Coding for Minimum Decoding Delay
Network coding is a highly efficient data dissemination mechanism for
wireless networks. Since network coded information can only be recovered after
delivering a sufficient number of coded packets, the resulting decoding delay
can become problematic for delay-sensitive applications such as real-time media
streaming. Motivated by this observation, we consider several algorithms that
minimize the decoding delay and analyze their performance by means of
simulation. The algorithms differ both in the required information about the
state of the neighbors' buffers and in the way this knowledge is used to decide
which packets to combine through coding operations. Our results show that a
greedy algorithm, whose encodings maximize the number of nodes at which a coded
packet is immediately decodable significantly outperforms existing network
coding protocols.Comment: Proc. of the IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (IEEE MASS 2008), Atlanta, USA, September 200
Effective Delay Control in Online Network Coding
Motivated by streaming applications with stringent delay constraints, we
consider the design of online network coding algorithms with timely delivery
guarantees. Assuming that the sender is providing the same data to multiple
receivers over independent packet erasure channels, we focus on the case of
perfect feedback and heterogeneous erasure probabilities. Based on a general
analytical framework for evaluating the decoding delay, we show that existing
ARQ schemes fail to ensure that receivers with weak channels are able to
recover from packet losses within reasonable time. To overcome this problem, we
re-define the encoding rules in order to break the chains of linear
combinations that cannot be decoded after one of the packets is lost. Our
results show that sending uncoded packets at key times ensures that all the
receivers are able to meet specific delay requirements with very high
probability.Comment: 9 pages, IEEE Infocom 200
Evolutionarily conserved mechanisms of male germline development in flowering plants and animals
Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline
Evolution of body mass índex of women undergoing bariatric surgery in the pre- and pos-operative period: a retrospective study
[resumo][abstract
- …
