5,953 research outputs found

    Network Information Flow in Small World Networks

    Get PDF
    Recent results from statistical physics show that large classes of complex networks, both man-made and of natural origin, are characterized by high clustering properties yet strikingly short path lengths between pairs of nodes. This class of networks are said to have a small-world topology. In the context of communication networks, navigable small-world topologies, i.e. those which admit efficient distributed routing algorithms, are deemed particularly effective, for example in resource discovery tasks and peer-to-peer applications. Breaking with the traditional approach to small-world topologies that privileges graph parameters pertaining to connectivity, and intrigued by the fundamental limits of communication in networks that exploit this type of topology, we investigate the capacity of these networks from the perspective of network information flow. Our contribution includes upper and lower bounds for the capacity of standard and navigable small-world models, and the somewhat surprising result that, with high probability, random rewiring does not alter the capacity of a small-world network.Comment: 23 pages, 8 fitures, submitted to the IEEE Transactions on Information Theory, November 200

    Informed Network Coding for Minimum Decoding Delay

    Full text link
    Network coding is a highly efficient data dissemination mechanism for wireless networks. Since network coded information can only be recovered after delivering a sufficient number of coded packets, the resulting decoding delay can become problematic for delay-sensitive applications such as real-time media streaming. Motivated by this observation, we consider several algorithms that minimize the decoding delay and analyze their performance by means of simulation. The algorithms differ both in the required information about the state of the neighbors' buffers and in the way this knowledge is used to decide which packets to combine through coding operations. Our results show that a greedy algorithm, whose encodings maximize the number of nodes at which a coded packet is immediately decodable significantly outperforms existing network coding protocols.Comment: Proc. of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2008), Atlanta, USA, September 200

    Effective Delay Control in Online Network Coding

    Full text link
    Motivated by streaming applications with stringent delay constraints, we consider the design of online network coding algorithms with timely delivery guarantees. Assuming that the sender is providing the same data to multiple receivers over independent packet erasure channels, we focus on the case of perfect feedback and heterogeneous erasure probabilities. Based on a general analytical framework for evaluating the decoding delay, we show that existing ARQ schemes fail to ensure that receivers with weak channels are able to recover from packet losses within reasonable time. To overcome this problem, we re-define the encoding rules in order to break the chains of linear combinations that cannot be decoded after one of the packets is lost. Our results show that sending uncoded packets at key times ensures that all the receivers are able to meet specific delay requirements with very high probability.Comment: 9 pages, IEEE Infocom 200

    Evolutionarily conserved mechanisms of male germline development in flowering plants and animals

    Get PDF
    Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline
    corecore